Cargando…

Microcystins Exposure Associated with Blood Lipid Profiles and Dyslipidemia: A Cross-Sectional Study in Hunan Province, China

Increasing evidence from experimental research suggests that exposure to microcystins (MCs) may induce lipid metabolism disorder. However, population-based epidemiological studies of the association between MCs exposure and the risk of dyslipidemia are lacking. Therefore, we conducted a population-b...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Shuidong, Cao, Mengyue, Tang, Peng, Deng, Shuxiang, Chen, Limou, Tang, Yan, Zhu, Lemei, Chen, Xiang, Huang, Zhijun, Shen, Minxue, Yang, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143012/
https://www.ncbi.nlm.nih.gov/pubmed/37104231
http://dx.doi.org/10.3390/toxins15040293
Descripción
Sumario:Increasing evidence from experimental research suggests that exposure to microcystins (MCs) may induce lipid metabolism disorder. However, population-based epidemiological studies of the association between MCs exposure and the risk of dyslipidemia are lacking. Therefore, we conducted a population-based cross-sectional study involving 720 participants in Hunan Province, China, and evaluated the effects of MCs on blood lipids. After adjusting the lipid related metals, we used binary logistic regression and multiple linear regression models to examine the associations among serum MCs concentration, the risk of dyslipidemia and blood lipids (triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C)). Moreover, the additive model was used to explore the interaction effects on dyslipidemia between MCs and metals. Compared to the lowest quartile of MCs exposure, the risk of dyslipidemia [odds ratios (OR) = 2.27, 95% confidence interval (CI): 1.46, 3.53] and hyperTG (OR = 3.01, 95% CI: 1.79, 5.05) in the highest quartile was significantly increased, and showed dose–response relationships. MCs were positively associated with TG level (percent change, 9.43%; 95% CI: 3.53%, 15.67%) and negatively associated with HDL-C level (percent change, −3.53%; 95% CI: −5.70%, −2.10%). In addition, an additive antagonistic effect of MCs and Zn on dyslipidemia was also reported [relative excess risk due to interaction (RERI) = −1.81 (95% CI: −3.56, −0.05)], and the attributable proportion of the reduced risk of dyslipidemia due to the antagonism of these two exposures was 83% (95% CI: −1.66, −0.005). Our study first indicated that MCs exposure is an independent risk factor for dyslipidemia in a dose–response manner.