Cargando…
Efficient L(p) Distance Computation Using Function-Hiding Inner Product Encryption for Privacy-Preserving Anomaly Detection
In Internet of Things (IoT) systems in which a large number of IoT devices are connected to each other and to third-party servers, it is crucial to verify whether each device operates appropriately. Although anomaly detection can help with this verification, individual devices cannot afford this pro...
Autores principales: | Ryu, Dong-Hyeon, Jeon, Seong-Yun, Hong, Junho, Lee, Mun-Kyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143019/ https://www.ncbi.nlm.nih.gov/pubmed/37112508 http://dx.doi.org/10.3390/s23084169 |
Ejemplares similares
-
Efficient and Privacy-Preserving Energy Trading on Blockchain Using Dual Binary Encoding for Inner Product Encryption †
por: Gaybullaev, Turabek, et al.
Publicado: (2021) -
Privacy-preserving approximate GWAS computation based on homomorphic encryption
por: Kim, Duhyeong, et al.
Publicado: (2020) -
Privacy-preserving cancer type prediction with homomorphic encryption
por: Sarkar, Esha, et al.
Publicado: (2023) -
A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
por: Yang, Wencheng, et al.
Publicado: (2023) -
Efficient Text Encryption and Hiding with Double-Random Phase-Encoding
por: Sang, Jun, et al.
Publicado: (2012)