Cargando…
Hierarchical Trajectory Planning for Narrow-Space Automated Parking with Deep Reinforcement Learning: A Federated Learning Scheme
Collision-free trajectory planning in narrow spaces has become one of the most challenging tasks in automated parking scenarios. Previous optimization-based approaches can generate accurate parking trajectories, but these methods cannot compute feasible solutions with extremely complex constraints i...
Autores principales: | Yuan, Zheng, Wang, Zhe, Li, Xinhang, Li, Lei, Zhang, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143055/ https://www.ncbi.nlm.nih.gov/pubmed/37112428 http://dx.doi.org/10.3390/s23084087 |
Ejemplares similares
-
Model-Based Predictive Control and Reinforcement Learning for Planning Vehicle-Parking Trajectories for Vertical Parking Spaces
por: Shi, Junren, et al.
Publicado: (2023) -
Data Efficient Reinforcement Learning for Integrated Lateral Planning and Control in Automated Parking System
por: Song, Shaoyu, et al.
Publicado: (2020) -
The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning
por: Yu, Jinglun, et al.
Publicado: (2020) -
Reinforcement Learning-Based End-to-End Parking for Automatic Parking System
por: Zhang, Peizhi, et al.
Publicado: (2019) -
Deep Reinforcement Learning Based Trajectory Planning Under Uncertain Constraints
por: Chen, Lienhung, et al.
Publicado: (2022)