Cargando…
Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units—An In Vitro Study
The number of Candida spp. infections and drug resistance are dramatically increasing worldwide, particularly among immunosuppressed patients, and it is urgent to find novel compounds with antifungal activity. In this work, the antifungal and antibiofilm activity of thymoquinone (TQ), a key bioactiv...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143056/ https://www.ncbi.nlm.nih.gov/pubmed/37110238 http://dx.doi.org/10.3390/metabo13040580 |
_version_ | 1785033760542031872 |
---|---|
author | Nouri, Noura Mohammadi, Shahla Roudbar Beardsley, Justin Aslani, Peyman Ghaffarifar, Fatemeh Roudbary, Maryam Rodrigues, Célia Fortuna |
author_facet | Nouri, Noura Mohammadi, Shahla Roudbar Beardsley, Justin Aslani, Peyman Ghaffarifar, Fatemeh Roudbary, Maryam Rodrigues, Célia Fortuna |
author_sort | Nouri, Noura |
collection | PubMed |
description | The number of Candida spp. infections and drug resistance are dramatically increasing worldwide, particularly among immunosuppressed patients, and it is urgent to find novel compounds with antifungal activity. In this work, the antifungal and antibiofilm activity of thymoquinone (TQ), a key bioactive constituent of black cumin seed Nigella sativa L., was evaluated against Candida glabrata, a WHO ‘high-priority’ pathogen. Then, its effect on the expression of C. glabrata EPA6 and EPA7 genes (related to biofilm adhesion and development, respectively) were analyzed. Swab samples were taken from the oral cavity of 90 hospitalized patients in ICU wards, transferred to sterile falcon tubes, and cultured on Sabouraud Dextrose Agar (SDA) and Chromagar Candida for presumptive identification. Next, a 21-plex PCR was carried out for the confirmation of species level. C. glabrata isolates underwent antifungal drug susceptibility testing against fluconazole (FLZ), itraconazole (ITZ), amphotericin B (AMB), and TQ according to the CLSI microdilution method (M27, A3/S4). Biofilm formation was measured by an MTT assay. EPA6 and EPA7 gene expression was assessed by real-time PCR. From the 90 swab samples, 40 isolates were identified as C. glabrata with the 21-plex PCR. Most isolates were resistant to FLZ (n = 29, 72.5%), whereas 12.5% and 5% were ITZ and AMB resistant, respectively. The minimum inhibitory concentration (MIC(50)) of TQ against C. glabrata was 50 µg/mL. Importantly, TQ significantly inhibited the biofilm formation of C. glabrata isolates, and EPA6 gene expression was reduced significantly at MIC(50) concentration of TQ. TQ seems to have some antifungal, antibiofilm (adhesion) effect on C. glabrata isolates, showing that this plant secondary metabolite is a promising agent to overcome Candida infections, especially oral candidiasis. |
format | Online Article Text |
id | pubmed-10143056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101430562023-04-29 Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units—An In Vitro Study Nouri, Noura Mohammadi, Shahla Roudbar Beardsley, Justin Aslani, Peyman Ghaffarifar, Fatemeh Roudbary, Maryam Rodrigues, Célia Fortuna Metabolites Article The number of Candida spp. infections and drug resistance are dramatically increasing worldwide, particularly among immunosuppressed patients, and it is urgent to find novel compounds with antifungal activity. In this work, the antifungal and antibiofilm activity of thymoquinone (TQ), a key bioactive constituent of black cumin seed Nigella sativa L., was evaluated against Candida glabrata, a WHO ‘high-priority’ pathogen. Then, its effect on the expression of C. glabrata EPA6 and EPA7 genes (related to biofilm adhesion and development, respectively) were analyzed. Swab samples were taken from the oral cavity of 90 hospitalized patients in ICU wards, transferred to sterile falcon tubes, and cultured on Sabouraud Dextrose Agar (SDA) and Chromagar Candida for presumptive identification. Next, a 21-plex PCR was carried out for the confirmation of species level. C. glabrata isolates underwent antifungal drug susceptibility testing against fluconazole (FLZ), itraconazole (ITZ), amphotericin B (AMB), and TQ according to the CLSI microdilution method (M27, A3/S4). Biofilm formation was measured by an MTT assay. EPA6 and EPA7 gene expression was assessed by real-time PCR. From the 90 swab samples, 40 isolates were identified as C. glabrata with the 21-plex PCR. Most isolates were resistant to FLZ (n = 29, 72.5%), whereas 12.5% and 5% were ITZ and AMB resistant, respectively. The minimum inhibitory concentration (MIC(50)) of TQ against C. glabrata was 50 µg/mL. Importantly, TQ significantly inhibited the biofilm formation of C. glabrata isolates, and EPA6 gene expression was reduced significantly at MIC(50) concentration of TQ. TQ seems to have some antifungal, antibiofilm (adhesion) effect on C. glabrata isolates, showing that this plant secondary metabolite is a promising agent to overcome Candida infections, especially oral candidiasis. MDPI 2023-04-21 /pmc/articles/PMC10143056/ /pubmed/37110238 http://dx.doi.org/10.3390/metabo13040580 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nouri, Noura Mohammadi, Shahla Roudbar Beardsley, Justin Aslani, Peyman Ghaffarifar, Fatemeh Roudbary, Maryam Rodrigues, Célia Fortuna Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units—An In Vitro Study |
title | Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units—An In Vitro Study |
title_full | Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units—An In Vitro Study |
title_fullStr | Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units—An In Vitro Study |
title_full_unstemmed | Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units—An In Vitro Study |
title_short | Thymoquinone Antifungal Activity against Candida glabrata Oral Isolates from Patients in Intensive Care Units—An In Vitro Study |
title_sort | thymoquinone antifungal activity against candida glabrata oral isolates from patients in intensive care units—an in vitro study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143056/ https://www.ncbi.nlm.nih.gov/pubmed/37110238 http://dx.doi.org/10.3390/metabo13040580 |
work_keys_str_mv | AT nourinoura thymoquinoneantifungalactivityagainstcandidaglabrataoralisolatesfrompatientsinintensivecareunitsaninvitrostudy AT mohammadishahlaroudbar thymoquinoneantifungalactivityagainstcandidaglabrataoralisolatesfrompatientsinintensivecareunitsaninvitrostudy AT beardsleyjustin thymoquinoneantifungalactivityagainstcandidaglabrataoralisolatesfrompatientsinintensivecareunitsaninvitrostudy AT aslanipeyman thymoquinoneantifungalactivityagainstcandidaglabrataoralisolatesfrompatientsinintensivecareunitsaninvitrostudy AT ghaffarifarfatemeh thymoquinoneantifungalactivityagainstcandidaglabrataoralisolatesfrompatientsinintensivecareunitsaninvitrostudy AT roudbarymaryam thymoquinoneantifungalactivityagainstcandidaglabrataoralisolatesfrompatientsinintensivecareunitsaninvitrostudy AT rodriguesceliafortuna thymoquinoneantifungalactivityagainstcandidaglabrataoralisolatesfrompatientsinintensivecareunitsaninvitrostudy |