Cargando…
Deep Reinforcement Learning–Based Online One-to-Multiple Charging Scheme in Wireless Rechargeable Sensor Network
Wireless rechargeable sensor networks (WRSN) have been emerging as an effective solution to the energy constraint problem of wireless sensor networks (WSN). However, most of the existing charging schemes use Mobile Charging (MC) to charge nodes one-to-one and do not optimize MC scheduling from a mor...
Autores principales: | Gong, Zheng, Wu, Hao, Feng, Yong, Liu, Nianbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143104/ https://www.ncbi.nlm.nih.gov/pubmed/37112245 http://dx.doi.org/10.3390/s23083903 |
Ejemplares similares
-
An Online Charging Scheme for Wireless Rechargeable Sensor Networks Based on a Radical Basis Function
por: Yang, Jia, et al.
Publicado: (2019) -
RCSS: A Real-Time On-Demand Charging Scheduling Scheme for Wireless Rechargeable Sensor Networks
por: Zhong, Ping, et al.
Publicado: (2018) -
Mobile Charging Strategy for Wireless Rechargeable Sensor Networks
por: Chen, Tzung-Shi, et al.
Publicado: (2022) -
Attention-Shared Multi-Agent Actor–Critic-Based Deep Reinforcement Learning Approach for Mobile Charging Dynamic Scheduling in Wireless Rechargeable Sensor Networks
por: Jiang, Chengpeng, et al.
Publicado: (2022) -
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks
por: Jia, Jie, et al.
Publicado: (2017)