Cargando…

Large-Scale Predictions of Compound Potency with Original and Modified Activity Classes Reveal General Prediction Characteristics and Intrinsic Limitations of Conventional Benchmarking Calculations

Predicting compound potency is a major task in computational medicinal chemistry, for which machine learning is often applied. This study systematically predicted compound potency values for 367 target-based compound activity classes from medicinal chemistry using a preferred machine learning approa...

Descripción completa

Detalles Bibliográficos
Autores principales: Janela, Tiago, Bajorath, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143224/
https://www.ncbi.nlm.nih.gov/pubmed/37111287
http://dx.doi.org/10.3390/ph16040530
Descripción
Sumario:Predicting compound potency is a major task in computational medicinal chemistry, for which machine learning is often applied. This study systematically predicted compound potency values for 367 target-based compound activity classes from medicinal chemistry using a preferred machine learning approach and simple control methods. The predictions produced unexpectedly similar results for different classes and comparably high accuracy for machine learning and simple control models. Based on these findings, the influence of different data set modifications on relative prediction accuracies was explored, including potency range balancing, removal of nearest neighbors, and analog series-based compound partitioning. The predictions were surprisingly resistant to these modifications, leading to only small error margin increases. These findings also show that conventional benchmark settings are unsuitable for directly comparing potency prediction methods.