Cargando…
Large-Scale Predictions of Compound Potency with Original and Modified Activity Classes Reveal General Prediction Characteristics and Intrinsic Limitations of Conventional Benchmarking Calculations
Predicting compound potency is a major task in computational medicinal chemistry, for which machine learning is often applied. This study systematically predicted compound potency values for 367 target-based compound activity classes from medicinal chemistry using a preferred machine learning approa...
Autores principales: | Janela, Tiago, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143224/ https://www.ncbi.nlm.nih.gov/pubmed/37111287 http://dx.doi.org/10.3390/ph16040530 |
Ejemplares similares
-
Rationalizing general limitations in assessing and comparing methods for compound potency prediction
por: Janela, Tiago, et al.
Publicado: (2023) -
Predicting Potent Compounds Using a Conditional Variational Autoencoder Based upon a New Structure–Potency Fingerprint
por: Janela, Tiago, et al.
Publicado: (2023) -
Systematic Artifacts in Support Vector Regression-Based Compound Potency Prediction Revealed by Statistical and Activity Landscape Analysis
por: Balfer, Jenny, et al.
Publicado: (2015) -
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020) -
Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2021)