Cargando…

Characterization of New Polymer Material of Amino-β-Cyclodextrin and Sodium Alginate for Environmental Purposes

The β-cyclodextrin polymer (PβCD) cross-linked with pyromellitic dianhydride (PD) and functionalized with an amino group (PAβCD) was introduced into a matrix made of sodium alginate (SA). Scanning electron microscopy (SEM) images showed a homogeneous surface of the composite material. Infrared spect...

Descripción completa

Detalles Bibliográficos
Autores principales: Kozieł-Trąbska, Kinga, Żarska, Sandra, Girek, Tomasz, Ciesielski, Wojciech
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143267/
https://www.ncbi.nlm.nih.gov/pubmed/37103874
http://dx.doi.org/10.3390/membranes13040447
Descripción
Sumario:The β-cyclodextrin polymer (PβCD) cross-linked with pyromellitic dianhydride (PD) and functionalized with an amino group (PAβCD) was introduced into a matrix made of sodium alginate (SA). Scanning electron microscopy (SEM) images showed a homogeneous surface of the composite material. Infrared spectroscopy (FTIR) testing of the PAβCD confirmed polymer formation. The tested polymer increased its solubility relative to the polymer without the amino group. Thermogravimetric analysis (TGA) confirmed the stability of the system. Differential scanning calorimetry (DSC) showed the chemical binding of PAβCD and SA. Gel permeation chromatography (GPC-SEC) showed high cross-linking of PAβCD and allowed for accurate determination of its weight. The formation of the composite material such as PAβCD introduced into a matrix made of sodium alginate (SA) has several potential environmental implications, including the use of sustainable materials, reduced waste generation, reduced toxicity, and improved solubility.