Cargando…
Regularization for Unsupervised Learning of Optical Flow
Regularization is an important technique for training deep neural networks. In this paper, we propose a novel shared-weight teacher–student strategy and a content-aware regularization (CAR) module. Based on a tiny, learnable, content-aware mask, CAR is randomly applied to some channels in the convol...
Autores principales: | Long, Libo, Lang, Jochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143342/ https://www.ncbi.nlm.nih.gov/pubmed/37112421 http://dx.doi.org/10.3390/s23084080 |
Ejemplares similares
-
Unsupervised Learning of Monocular Depth and Ego-Motion with Optical Flow Features and Multiple Constraints
por: Zhao, Baigan, et al.
Publicado: (2022) -
Unsupervised Learning for Depth, Ego-Motion, and Optical Flow Estimation Using Coupled Consistency Conditions
por: Mun, Ji-Hun, et al.
Publicado: (2019) -
Implicit and Explicit Regularization for Optical Flow Estimation
por: Karageorgos, Konstantinos, et al.
Publicado: (2020) -
Observing flow of He II with unsupervised machine learning
por: Wen, X., et al.
Publicado: (2022) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021)