Cargando…

rAAV2-Mediated Restoration of GALC in Neural Stem Cells from Krabbe Patient-Derived iPSCs

Krabbe disease is a rare neurodegenerative fatal disease. It is caused by deficiency of the lysosomal enzyme galactocerebrosidase (GALC), which results in progressive accumulation of galactolipid substrates in myelin-forming cells. However, there is still a lack of appropriate neural models and effe...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Guoshuai, Cao, Chunyu, Li, Shuyue, Wang, Wei, Zhang, Ye, Lv, Yafeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143348/
https://www.ncbi.nlm.nih.gov/pubmed/37111381
http://dx.doi.org/10.3390/ph16040624
Descripción
Sumario:Krabbe disease is a rare neurodegenerative fatal disease. It is caused by deficiency of the lysosomal enzyme galactocerebrosidase (GALC), which results in progressive accumulation of galactolipid substrates in myelin-forming cells. However, there is still a lack of appropriate neural models and effective approaches for Krabbe disease. We generated induced pluripotent stem cells (iPSCs) from a Krabbe patient previously. Here, Krabbe patient-derived neural stem cells (K-NSCs) were induced from these iPSCs. By using nine kinds of recombinant adeno-associated virus (rAAV) vectors to infect K-NSCs, we found that the rAAV2 vector has high transduction efficiency for K-NSCs. Most importantly, rAAV2-GALC rescued GALC enzymatic activity in K-NSCs. Our findings not only establish a novel patient NSC model for Krabbe disease, but also firstly indicate the potential of rAAV2-mediated gene therapy for this devastating disease.