Cargando…
Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach
Compressive sensing (CS) of the signal ambiguity function (AF) and enforcing the sparsity constraint on the resulting signal time-frequency distribution (TFD) has been shown to be an efficient method for time-frequency signal processing. This paper proposes a method for adaptive CS-AF area selection...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143442/ https://www.ncbi.nlm.nih.gov/pubmed/37112488 http://dx.doi.org/10.3390/s23084148 |
_version_ | 1785033852766388224 |
---|---|
author | Jurdana, Vedran Lopac, Nikola Vrankic, Miroslav |
author_facet | Jurdana, Vedran Lopac, Nikola Vrankic, Miroslav |
author_sort | Jurdana, Vedran |
collection | PubMed |
description | Compressive sensing (CS) of the signal ambiguity function (AF) and enforcing the sparsity constraint on the resulting signal time-frequency distribution (TFD) has been shown to be an efficient method for time-frequency signal processing. This paper proposes a method for adaptive CS-AF area selection, which extracts the magnitude-significant AF samples through a clustering approach using the density-based spatial clustering algorithm. Moreover, an appropriate criterion for the performance of the method is formalized, i.e., component concentration and preservation, as well as interference suppression, are measured utilizing the information obtained from the short-term and the narrow-band Rényi entropies, while component connectivity is evaluated using the number of regions with continuously-connected samples. The CS-AF area selection and reconstruction algorithm parameters are optimized using an automatic multi-objective meta-heuristic optimization method, minimizing the here-proposed combination of measures as objective functions. Consistent improvement in CS-AF area selection and TFD reconstruction performance has been achieved without requiring a priori knowledge of the input signal for multiple reconstruction algorithms. This was demonstrated for both noisy synthetic and real-life signals. |
format | Online Article Text |
id | pubmed-10143442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101434422023-04-29 Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach Jurdana, Vedran Lopac, Nikola Vrankic, Miroslav Sensors (Basel) Article Compressive sensing (CS) of the signal ambiguity function (AF) and enforcing the sparsity constraint on the resulting signal time-frequency distribution (TFD) has been shown to be an efficient method for time-frequency signal processing. This paper proposes a method for adaptive CS-AF area selection, which extracts the magnitude-significant AF samples through a clustering approach using the density-based spatial clustering algorithm. Moreover, an appropriate criterion for the performance of the method is formalized, i.e., component concentration and preservation, as well as interference suppression, are measured utilizing the information obtained from the short-term and the narrow-band Rényi entropies, while component connectivity is evaluated using the number of regions with continuously-connected samples. The CS-AF area selection and reconstruction algorithm parameters are optimized using an automatic multi-objective meta-heuristic optimization method, minimizing the here-proposed combination of measures as objective functions. Consistent improvement in CS-AF area selection and TFD reconstruction performance has been achieved without requiring a priori knowledge of the input signal for multiple reconstruction algorithms. This was demonstrated for both noisy synthetic and real-life signals. MDPI 2023-04-20 /pmc/articles/PMC10143442/ /pubmed/37112488 http://dx.doi.org/10.3390/s23084148 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jurdana, Vedran Lopac, Nikola Vrankic, Miroslav Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach |
title | Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach |
title_full | Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach |
title_fullStr | Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach |
title_full_unstemmed | Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach |
title_short | Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach |
title_sort | sparse time-frequency distribution reconstruction using the adaptive compressed sensed area optimized with the multi-objective approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143442/ https://www.ncbi.nlm.nih.gov/pubmed/37112488 http://dx.doi.org/10.3390/s23084148 |
work_keys_str_mv | AT jurdanavedran sparsetimefrequencydistributionreconstructionusingtheadaptivecompressedsensedareaoptimizedwiththemultiobjectiveapproach AT lopacnikola sparsetimefrequencydistributionreconstructionusingtheadaptivecompressedsensedareaoptimizedwiththemultiobjectiveapproach AT vrankicmiroslav sparsetimefrequencydistributionreconstructionusingtheadaptivecompressedsensedareaoptimizedwiththemultiobjectiveapproach |