Cargando…
A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge
The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain–Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV inf...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143468/ https://www.ncbi.nlm.nih.gov/pubmed/37112733 http://dx.doi.org/10.3390/vaccines11040821 |
_version_ | 1785033859181576192 |
---|---|
author | Pattnaik, Aryamav Sahoo, Bikash R. Struble, Lucas R. Borgstahl, Gloria E. O. Zhou, You Franco, Rodrigo Barletta, Raul G. Osorio, Fernando A. Petro, Thomas M. Pattnaik, Asit K. |
author_facet | Pattnaik, Aryamav Sahoo, Bikash R. Struble, Lucas R. Borgstahl, Gloria E. O. Zhou, You Franco, Rodrigo Barletta, Raul G. Osorio, Fernando A. Petro, Thomas M. Pattnaik, Asit K. |
author_sort | Pattnaik, Aryamav |
collection | PubMed |
description | The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain–Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV. |
format | Online Article Text |
id | pubmed-10143468 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101434682023-04-29 A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge Pattnaik, Aryamav Sahoo, Bikash R. Struble, Lucas R. Borgstahl, Gloria E. O. Zhou, You Franco, Rodrigo Barletta, Raul G. Osorio, Fernando A. Petro, Thomas M. Pattnaik, Asit K. Vaccines (Basel) Article The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain–Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV. MDPI 2023-04-10 /pmc/articles/PMC10143468/ /pubmed/37112733 http://dx.doi.org/10.3390/vaccines11040821 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pattnaik, Aryamav Sahoo, Bikash R. Struble, Lucas R. Borgstahl, Gloria E. O. Zhou, You Franco, Rodrigo Barletta, Raul G. Osorio, Fernando A. Petro, Thomas M. Pattnaik, Asit K. A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge |
title | A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge |
title_full | A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge |
title_fullStr | A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge |
title_full_unstemmed | A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge |
title_short | A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge |
title_sort | ferritin nanoparticle-based zika virus vaccine candidate induces robust humoral and cellular immune responses and protects mice from lethal virus challenge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143468/ https://www.ncbi.nlm.nih.gov/pubmed/37112733 http://dx.doi.org/10.3390/vaccines11040821 |
work_keys_str_mv | AT pattnaikaryamav aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT sahoobikashr aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT strublelucasr aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT borgstahlgloriaeo aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT zhouyou aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT francorodrigo aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT barlettaraulg aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT osoriofernandoa aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT petrothomasm aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT pattnaikasitk aferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT pattnaikaryamav ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT sahoobikashr ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT strublelucasr ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT borgstahlgloriaeo ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT zhouyou ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT francorodrigo ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT barlettaraulg ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT osoriofernandoa ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT petrothomasm ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge AT pattnaikasitk ferritinnanoparticlebasedzikavirusvaccinecandidateinducesrobusthumoralandcellularimmuneresponsesandprotectsmicefromlethalviruschallenge |