Cargando…
A Brief Overview of the Rapid Progress and Proposed Improvements in Gallium Nitride Epitaxy and Process for Third-Generation Semiconductors with Wide Bandgap
In this paper, we will discuss the rapid progress of third-generation semiconductors with wide bandgap, with a special focus on the gallium nitride (GaN) on silicon (Si). This architecture has high mass-production potential due to its low cost, larger size, and compatibility with CMOS-fab processes....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143529/ https://www.ncbi.nlm.nih.gov/pubmed/37420998 http://dx.doi.org/10.3390/mi14040764 |
Sumario: | In this paper, we will discuss the rapid progress of third-generation semiconductors with wide bandgap, with a special focus on the gallium nitride (GaN) on silicon (Si). This architecture has high mass-production potential due to its low cost, larger size, and compatibility with CMOS-fab processes. As a result, several improvements have been proposed in terms of epitaxy structure and high electron mobility transistor (HEMT) process, particularly in the enhancement mode (E-mode). IMEC has made significant strides using a 200 mm 8-inch Qromis Substrate Technology (QST(®)) substrate for breakdown voltage to achieve 650 V in 2020, which was further improved to 1200 V by superlattice and carbon-doped in 2022. In 2016, IMEC adopted VEECO metal-organic chemical vapor deposition (MOCVD) for GaN on Si HEMT epitaxy structure and the process by implementing a three-layer field plate to improve dynamic on-resistance (R(ON)). In 2019, Panasonic HD-GITs plus field version was utilized to effectively improve dynamic R(ON). Both reliability and dynamic RON have been enhanced by these improvements. |
---|