Cargando…

Poloxamer/Carboxymethyl Pullulan Aqueous Systems—Miscibility and Thermogelation Studies Using Viscometry, Rheology and Dynamic Light Scattering

Thermally-induced gelling systems based on Poloxamer 407 (PL) and polysaccharides are known for their biomedical applications; however, phase separation frequently occurs in mixtures of poloxamer and neutral polysaccharides. In the present paper, the carboxymethyl pullulan (CMP) (here synthesized) w...

Descripción completa

Detalles Bibliográficos
Autores principales: Popescu, Irina, Constantin, Marieta, Bercea, Maria, Coșman, Bogdan-Paul, Suflet, Dana Mihaela, Fundueanu, Gheorghe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143542/
https://www.ncbi.nlm.nih.gov/pubmed/37112056
http://dx.doi.org/10.3390/polym15081909
Descripción
Sumario:Thermally-induced gelling systems based on Poloxamer 407 (PL) and polysaccharides are known for their biomedical applications; however, phase separation frequently occurs in mixtures of poloxamer and neutral polysaccharides. In the present paper, the carboxymethyl pullulan (CMP) (here synthesized) was proposed for compatibilization with poloxamer (PL). The miscibility between PL and CMP in dilute aqueous solution was studied by capillary viscometry. CMP with substitution degrees higher than 0.5 proved to be compatible with PL. The thermogelation of concentrated PL solutions (17%) in the presence of CMP was monitored by the tube inversion method, texture analysis and rheology. The micellization and gelation of PL in the absence or in the presence of CMP were also studied by dynamic light scattering. The critical micelle temperature and sol–gel transition temperature decrease with the addition of CMP, but the concentration of CMP has a peculiar influence on the rheological parameters of the gels. In fact, low concentrations of CMP decrease the gel strength. With a further increase in polyelectrolyte concentration, the gel strength increases until 1% CMP, then the rheological parameters are lowered again. At 37 °C, the gels are able to recover the initial network structure after high deformations, showing a reversible healing process.