Cargando…
Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings
The construction industry is on the lookout for cost-effective structural members that are also environmentally friendly. Built-up cold-formed steel (CFS) sections with minimal thickness can be used to make beams at a lower cost. Plate buckling in CFS beams with thin webs can be avoided by using thi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143601/ https://www.ncbi.nlm.nih.gov/pubmed/37109841 http://dx.doi.org/10.3390/ma16083002 |
_version_ | 1785033892480155648 |
---|---|
author | Samuel, James Nair, Shalini Ramachandran Joanna, Philip Saratha Gurupatham, Beulah Gnana Ananthi Roy, Krishanu Lim, James Boon Piang |
author_facet | Samuel, James Nair, Shalini Ramachandran Joanna, Philip Saratha Gurupatham, Beulah Gnana Ananthi Roy, Krishanu Lim, James Boon Piang |
author_sort | Samuel, James |
collection | PubMed |
description | The construction industry is on the lookout for cost-effective structural members that are also environmentally friendly. Built-up cold-formed steel (CFS) sections with minimal thickness can be used to make beams at a lower cost. Plate buckling in CFS beams with thin webs can be avoided by using thick webs, adding stiffeners, or strengthening the web with diagonal rebars. When CFS beams are designed to carry heavy loads, their depth logically increases, resulting in an increase in building floor height. The experimental and numerical investigation of CFS composite beams reinforced with diagonal web rebars is presented in this paper. A total of twelve built-up CFS beams were used for testing, with the first six designed without web encasement and the remaining six designed with web encasement. The first six were constructed with diagonal rebars in the shear and flexure zones, while the other two with diagonal rebars in the shear zone, and the last two without diagonal rebars. The next set of six beams was constructed in the same manner, but with a concrete encasement of the web, and all the beams were then tested. Fly ash, a pozzolanic waste byproduct of thermal power plants, was used as a 40% replacement for cement in making the test specimens. CFS beam failure characteristics, load–deflection behavior, ductility, load–strain relationship, moment–curvature relationship, and lateral stiffness were all investigated. The results of the experimental tests and the nonlinear finite element analysis performed in ANSYS software were found to be in good agreement. It was discovered that CFS beams with fly ash concrete encased webs have twice the moment resisting capacity of plain CFS beams, resulting in a reduction in building floor height. The results also confirmed that the composite CFS beams have high ductility, making them a reliable choice for earthquake-resistant structures. |
format | Online Article Text |
id | pubmed-10143601 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101436012023-04-29 Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings Samuel, James Nair, Shalini Ramachandran Joanna, Philip Saratha Gurupatham, Beulah Gnana Ananthi Roy, Krishanu Lim, James Boon Piang Materials (Basel) Article The construction industry is on the lookout for cost-effective structural members that are also environmentally friendly. Built-up cold-formed steel (CFS) sections with minimal thickness can be used to make beams at a lower cost. Plate buckling in CFS beams with thin webs can be avoided by using thick webs, adding stiffeners, or strengthening the web with diagonal rebars. When CFS beams are designed to carry heavy loads, their depth logically increases, resulting in an increase in building floor height. The experimental and numerical investigation of CFS composite beams reinforced with diagonal web rebars is presented in this paper. A total of twelve built-up CFS beams were used for testing, with the first six designed without web encasement and the remaining six designed with web encasement. The first six were constructed with diagonal rebars in the shear and flexure zones, while the other two with diagonal rebars in the shear zone, and the last two without diagonal rebars. The next set of six beams was constructed in the same manner, but with a concrete encasement of the web, and all the beams were then tested. Fly ash, a pozzolanic waste byproduct of thermal power plants, was used as a 40% replacement for cement in making the test specimens. CFS beam failure characteristics, load–deflection behavior, ductility, load–strain relationship, moment–curvature relationship, and lateral stiffness were all investigated. The results of the experimental tests and the nonlinear finite element analysis performed in ANSYS software were found to be in good agreement. It was discovered that CFS beams with fly ash concrete encased webs have twice the moment resisting capacity of plain CFS beams, resulting in a reduction in building floor height. The results also confirmed that the composite CFS beams have high ductility, making them a reliable choice for earthquake-resistant structures. MDPI 2023-04-10 /pmc/articles/PMC10143601/ /pubmed/37109841 http://dx.doi.org/10.3390/ma16083002 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Samuel, James Nair, Shalini Ramachandran Joanna, Philip Saratha Gurupatham, Beulah Gnana Ananthi Roy, Krishanu Lim, James Boon Piang Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings |
title | Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings |
title_full | Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings |
title_fullStr | Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings |
title_full_unstemmed | Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings |
title_short | Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings |
title_sort | composite cold-formed steel beams with diagonal rebars for earthquake-resistant buildings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143601/ https://www.ncbi.nlm.nih.gov/pubmed/37109841 http://dx.doi.org/10.3390/ma16083002 |
work_keys_str_mv | AT samueljames compositecoldformedsteelbeamswithdiagonalrebarsforearthquakeresistantbuildings AT nairshaliniramachandran compositecoldformedsteelbeamswithdiagonalrebarsforearthquakeresistantbuildings AT joannaphilipsaratha compositecoldformedsteelbeamswithdiagonalrebarsforearthquakeresistantbuildings AT gurupathambeulahgnanaananthi compositecoldformedsteelbeamswithdiagonalrebarsforearthquakeresistantbuildings AT roykrishanu compositecoldformedsteelbeamswithdiagonalrebarsforearthquakeresistantbuildings AT limjamesboonpiang compositecoldformedsteelbeamswithdiagonalrebarsforearthquakeresistantbuildings |