Cargando…
Characterization of Leptoglossus occidentalis Eggs and Egg Glue
SIMPLE SUMMARY: This study explored the chemical components of the egg glue used by the Western Conifer Seed Bug (Leptoglossus occidentalis Heidemann, 1910) to agglutinate eggs and adhere to pine needles. Results showed that the adhesive secretion includes plasticizers and thermoplastic elastomer re...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143709/ https://www.ncbi.nlm.nih.gov/pubmed/37103211 http://dx.doi.org/10.3390/insects14040396 |
Sumario: | SIMPLE SUMMARY: This study explored the chemical components of the egg glue used by the Western Conifer Seed Bug (Leptoglossus occidentalis Heidemann, 1910) to agglutinate eggs and adhere to pine needles. Results showed that the adhesive secretion includes plasticizers and thermoplastic elastomer resins with semiochemical properties in an oily matrix containing proteins. This knowledge of the egg glue composition can be used to develop new control strategies for L. occidentalis, potentially limiting the economic impact caused by this pest insect that reduces the production of pine nuts by up to 25%. ABSTRACT: The western conifer seed bug (Leptoglossus occidentalis Heidemann, 1910, Heteroptera: Coreidae) has a significant economic impact due to the reduction in the quality and viability of conifer seed crops; it can feed on up to 40 different species of conifers, showing a clear predilection for Pinus pinea L. in Europe. Its incidence is especially relevant for the pine nut-producing industry, given that the action of this pest insect can reduce the production of pine nuts by up to 25%. As part of ongoing efforts aimed at the design of control strategies for this insect, this work focuses on the characterization (by scanning electron microscopy–energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and gas chromatography–mass spectroscopy, GC–MS) of the compounds released by these insects during oviposition, with emphasis on the adhesive secretion that holds L. occidentalis eggs together. Elemental analysis pointed to the presence of significant amounts of compounds with high nitrogen content. Functional groups identified by infrared spectroscopy were compatible with the presence of chitin, scleroproteins, LNSP-like and gelatin proteins, shellac wax analogs, and policosanol. Regarding the chemical species identified by GC–MS, eggs and glue hydromethanolic extracts shared constituents such as butyl citrate, dibutyl itaconate, tributyl aconitate, oleic acid, oleamide, erucamide, and palmitic acid, while eggs also showed stearic and linoleic acid-related compounds. Knowledge of this composition may allow advances in new strategies to address the problem caused by L. occidentalis. |
---|