Cargando…

Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design

Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB...

Descripción completa

Detalles Bibliográficos
Autores principales: Tököli, Attila, Bodnár, Brigitta, Bogár, Ferenc, Paragi, Gábor, Hetényi, Anasztázia, Bartus, Éva, Wéber, Edit, Hegedüs, Zsófia, Szabó, Zoltán, Kecskeméti, Gábor, Szakonyi, Gerda, Martinek, Tamás A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143822/
https://www.ncbi.nlm.nih.gov/pubmed/37111518
http://dx.doi.org/10.3390/pharmaceutics15041032
_version_ 1785033950207410176
author Tököli, Attila
Bodnár, Brigitta
Bogár, Ferenc
Paragi, Gábor
Hetényi, Anasztázia
Bartus, Éva
Wéber, Edit
Hegedüs, Zsófia
Szabó, Zoltán
Kecskeméti, Gábor
Szakonyi, Gerda
Martinek, Tamás A.
author_facet Tököli, Attila
Bodnár, Brigitta
Bogár, Ferenc
Paragi, Gábor
Hetényi, Anasztázia
Bartus, Éva
Wéber, Edit
Hegedüs, Zsófia
Szabó, Zoltán
Kecskeméti, Gábor
Szakonyi, Gerda
Martinek, Tamás A.
author_sort Tököli, Attila
collection PubMed
description Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB mimetic inhibitors. Molecular dynamics simulations revealed the transient interactions of SSB-Ct with two hot spots on ExoI and RecO. The residual flexibility of the peptide–protein complexes allows adaptive molecular recognition. Scanning with non-canonical amino acids revealed that modifications at both termini of SSB-Ct could increase the affinity, supporting the two-hot-spot binding model. Combining unnatural amino acid substitutions on both segments of the peptide resulted in enthalpy-enhanced affinity, accompanied by enthalpy–entropy compensation, as determined by isothermal calorimetry. NMR data and molecular modeling confirmed the reduced flexibility of the improved affinity complexes. Our results highlight that the SSB-Ct mimetics bind to the DNA metabolizing targets through the hot spots, interacting with both of segments of the ligands.
format Online
Article
Text
id pubmed-10143822
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101438222023-04-29 Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design Tököli, Attila Bodnár, Brigitta Bogár, Ferenc Paragi, Gábor Hetényi, Anasztázia Bartus, Éva Wéber, Edit Hegedüs, Zsófia Szabó, Zoltán Kecskeméti, Gábor Szakonyi, Gerda Martinek, Tamás A. Pharmaceutics Article Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB mimetic inhibitors. Molecular dynamics simulations revealed the transient interactions of SSB-Ct with two hot spots on ExoI and RecO. The residual flexibility of the peptide–protein complexes allows adaptive molecular recognition. Scanning with non-canonical amino acids revealed that modifications at both termini of SSB-Ct could increase the affinity, supporting the two-hot-spot binding model. Combining unnatural amino acid substitutions on both segments of the peptide resulted in enthalpy-enhanced affinity, accompanied by enthalpy–entropy compensation, as determined by isothermal calorimetry. NMR data and molecular modeling confirmed the reduced flexibility of the improved affinity complexes. Our results highlight that the SSB-Ct mimetics bind to the DNA metabolizing targets through the hot spots, interacting with both of segments of the ligands. MDPI 2023-03-23 /pmc/articles/PMC10143822/ /pubmed/37111518 http://dx.doi.org/10.3390/pharmaceutics15041032 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tököli, Attila
Bodnár, Brigitta
Bogár, Ferenc
Paragi, Gábor
Hetényi, Anasztázia
Bartus, Éva
Wéber, Edit
Hegedüs, Zsófia
Szabó, Zoltán
Kecskeméti, Gábor
Szakonyi, Gerda
Martinek, Tamás A.
Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design
title Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design
title_full Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design
title_fullStr Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design
title_full_unstemmed Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design
title_short Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design
title_sort structural adaptation of the single-stranded dna-binding protein c-terminal to dna metabolizing partners guides inhibitor design
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143822/
https://www.ncbi.nlm.nih.gov/pubmed/37111518
http://dx.doi.org/10.3390/pharmaceutics15041032
work_keys_str_mv AT tokoliattila structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT bodnarbrigitta structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT bogarferenc structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT paragigabor structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT hetenyianasztazia structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT bartuseva structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT weberedit structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT hegeduszsofia structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT szabozoltan structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT kecskemetigabor structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT szakonyigerda structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign
AT martinektamasa structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign