Cargando…
Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design
Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143822/ https://www.ncbi.nlm.nih.gov/pubmed/37111518 http://dx.doi.org/10.3390/pharmaceutics15041032 |
_version_ | 1785033950207410176 |
---|---|
author | Tököli, Attila Bodnár, Brigitta Bogár, Ferenc Paragi, Gábor Hetényi, Anasztázia Bartus, Éva Wéber, Edit Hegedüs, Zsófia Szabó, Zoltán Kecskeméti, Gábor Szakonyi, Gerda Martinek, Tamás A. |
author_facet | Tököli, Attila Bodnár, Brigitta Bogár, Ferenc Paragi, Gábor Hetényi, Anasztázia Bartus, Éva Wéber, Edit Hegedüs, Zsófia Szabó, Zoltán Kecskeméti, Gábor Szakonyi, Gerda Martinek, Tamás A. |
author_sort | Tököli, Attila |
collection | PubMed |
description | Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB mimetic inhibitors. Molecular dynamics simulations revealed the transient interactions of SSB-Ct with two hot spots on ExoI and RecO. The residual flexibility of the peptide–protein complexes allows adaptive molecular recognition. Scanning with non-canonical amino acids revealed that modifications at both termini of SSB-Ct could increase the affinity, supporting the two-hot-spot binding model. Combining unnatural amino acid substitutions on both segments of the peptide resulted in enthalpy-enhanced affinity, accompanied by enthalpy–entropy compensation, as determined by isothermal calorimetry. NMR data and molecular modeling confirmed the reduced flexibility of the improved affinity complexes. Our results highlight that the SSB-Ct mimetics bind to the DNA metabolizing targets through the hot spots, interacting with both of segments of the ligands. |
format | Online Article Text |
id | pubmed-10143822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101438222023-04-29 Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design Tököli, Attila Bodnár, Brigitta Bogár, Ferenc Paragi, Gábor Hetényi, Anasztázia Bartus, Éva Wéber, Edit Hegedüs, Zsófia Szabó, Zoltán Kecskeméti, Gábor Szakonyi, Gerda Martinek, Tamás A. Pharmaceutics Article Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB mimetic inhibitors. Molecular dynamics simulations revealed the transient interactions of SSB-Ct with two hot spots on ExoI and RecO. The residual flexibility of the peptide–protein complexes allows adaptive molecular recognition. Scanning with non-canonical amino acids revealed that modifications at both termini of SSB-Ct could increase the affinity, supporting the two-hot-spot binding model. Combining unnatural amino acid substitutions on both segments of the peptide resulted in enthalpy-enhanced affinity, accompanied by enthalpy–entropy compensation, as determined by isothermal calorimetry. NMR data and molecular modeling confirmed the reduced flexibility of the improved affinity complexes. Our results highlight that the SSB-Ct mimetics bind to the DNA metabolizing targets through the hot spots, interacting with both of segments of the ligands. MDPI 2023-03-23 /pmc/articles/PMC10143822/ /pubmed/37111518 http://dx.doi.org/10.3390/pharmaceutics15041032 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tököli, Attila Bodnár, Brigitta Bogár, Ferenc Paragi, Gábor Hetényi, Anasztázia Bartus, Éva Wéber, Edit Hegedüs, Zsófia Szabó, Zoltán Kecskeméti, Gábor Szakonyi, Gerda Martinek, Tamás A. Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design |
title | Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design |
title_full | Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design |
title_fullStr | Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design |
title_full_unstemmed | Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design |
title_short | Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design |
title_sort | structural adaptation of the single-stranded dna-binding protein c-terminal to dna metabolizing partners guides inhibitor design |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143822/ https://www.ncbi.nlm.nih.gov/pubmed/37111518 http://dx.doi.org/10.3390/pharmaceutics15041032 |
work_keys_str_mv | AT tokoliattila structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT bodnarbrigitta structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT bogarferenc structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT paragigabor structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT hetenyianasztazia structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT bartuseva structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT weberedit structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT hegeduszsofia structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT szabozoltan structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT kecskemetigabor structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT szakonyigerda structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign AT martinektamasa structuraladaptationofthesinglestrandeddnabindingproteincterminaltodnametabolizingpartnersguidesinhibitordesign |