Cargando…
Development and Validation of an Explainable Machine Learning-Based Prediction Model for Drug–Food Interactions from Chemical Structures
Possible drug–food constituent interactions (DFIs) could change the intended efficiency of particular therapeutics in medical practice. The increasing number of multiple-drug prescriptions leads to the rise of drug–drug interactions (DDIs) and DFIs. These adverse interactions lead to other implicati...
Autores principales: | Kha, Quang-Hien, Le, Viet-Huan, Hung, Truong Nguyen Khanh, Nguyen, Ngan Thi Kim, Le, Nguyen Quoc Khanh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143839/ https://www.ncbi.nlm.nih.gov/pubmed/37112302 http://dx.doi.org/10.3390/s23083962 |
Ejemplares similares
-
Development and Validation of an Efficient MRI Radiomics Signature for Improving the Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas
por: Kha, Quang-Hien, et al.
Publicado: (2021) -
On the road to explainable AI in drug-drug interactions prediction: A systematic review
por: Vo, Thanh Hoa, et al.
Publicado: (2022) -
Risk Score Generated from CT-Based Radiomics Signatures for Overall Survival Prediction in Non-Small Cell Lung Cancer
por: Le, Viet-Huan, et al.
Publicado: (2021) -
Identifying SNARE
Proteins Using an Alignment-Free
Method Based on Multiscan Convolutional Neural Network and PSSM Profiles
por: Kha, Quang-Hien, et al.
Publicado: (2022) -
Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features
por: Dang, Luong Huu, et al.
Publicado: (2021)