Cargando…
Improving Recognition Accuracy of Pesticides in Groundwater by Applying TrAdaBoost Transfer Learning Method
Accurate and rapid prediction of pesticides in groundwater is important to protect human health. Thus, an electronic nose was used to recognize pesticides in groundwater. However, the e-nose response signals for pesticides are different in groundwater samples from various regions, so a prediction mo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143876/ https://www.ncbi.nlm.nih.gov/pubmed/37112197 http://dx.doi.org/10.3390/s23083856 |
_version_ | 1785033964480626688 |
---|---|
author | Chen, Donghui Wang, Bingyang Yang, Xiao Weng, Xiaohui Chang, Zhiyong |
author_facet | Chen, Donghui Wang, Bingyang Yang, Xiao Weng, Xiaohui Chang, Zhiyong |
author_sort | Chen, Donghui |
collection | PubMed |
description | Accurate and rapid prediction of pesticides in groundwater is important to protect human health. Thus, an electronic nose was used to recognize pesticides in groundwater. However, the e-nose response signals for pesticides are different in groundwater samples from various regions, so a prediction model built on one region’s samples might be ineffective when tested in another. Moreover, the establishment of a new prediction model requires a large number of sample data, which will cost too much resources and time. To resolve this issue, this study introduced the TrAdaBoost transfer learning method to recognize the pesticide in groundwater using the e-nose. The main work was divided into two steps: (1) qualitatively checking the pesticide type and (2) semi-quantitatively predicting the pesticide concentration. The support vector machine integrated with the TrAdaBoost was adopted to complete these two steps, and the recognition rate can be 19.3% and 22.2% higher than that of methods without transfer learning. These results demonstrated the potential of the TrAdaBoost based on support vector machine approaches in recognizing the pesticide in groundwater when there were few samples in the target domain. |
format | Online Article Text |
id | pubmed-10143876 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101438762023-04-29 Improving Recognition Accuracy of Pesticides in Groundwater by Applying TrAdaBoost Transfer Learning Method Chen, Donghui Wang, Bingyang Yang, Xiao Weng, Xiaohui Chang, Zhiyong Sensors (Basel) Article Accurate and rapid prediction of pesticides in groundwater is important to protect human health. Thus, an electronic nose was used to recognize pesticides in groundwater. However, the e-nose response signals for pesticides are different in groundwater samples from various regions, so a prediction model built on one region’s samples might be ineffective when tested in another. Moreover, the establishment of a new prediction model requires a large number of sample data, which will cost too much resources and time. To resolve this issue, this study introduced the TrAdaBoost transfer learning method to recognize the pesticide in groundwater using the e-nose. The main work was divided into two steps: (1) qualitatively checking the pesticide type and (2) semi-quantitatively predicting the pesticide concentration. The support vector machine integrated with the TrAdaBoost was adopted to complete these two steps, and the recognition rate can be 19.3% and 22.2% higher than that of methods without transfer learning. These results demonstrated the potential of the TrAdaBoost based on support vector machine approaches in recognizing the pesticide in groundwater when there were few samples in the target domain. MDPI 2023-04-10 /pmc/articles/PMC10143876/ /pubmed/37112197 http://dx.doi.org/10.3390/s23083856 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Donghui Wang, Bingyang Yang, Xiao Weng, Xiaohui Chang, Zhiyong Improving Recognition Accuracy of Pesticides in Groundwater by Applying TrAdaBoost Transfer Learning Method |
title | Improving Recognition Accuracy of Pesticides in Groundwater by Applying TrAdaBoost Transfer Learning Method |
title_full | Improving Recognition Accuracy of Pesticides in Groundwater by Applying TrAdaBoost Transfer Learning Method |
title_fullStr | Improving Recognition Accuracy of Pesticides in Groundwater by Applying TrAdaBoost Transfer Learning Method |
title_full_unstemmed | Improving Recognition Accuracy of Pesticides in Groundwater by Applying TrAdaBoost Transfer Learning Method |
title_short | Improving Recognition Accuracy of Pesticides in Groundwater by Applying TrAdaBoost Transfer Learning Method |
title_sort | improving recognition accuracy of pesticides in groundwater by applying tradaboost transfer learning method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143876/ https://www.ncbi.nlm.nih.gov/pubmed/37112197 http://dx.doi.org/10.3390/s23083856 |
work_keys_str_mv | AT chendonghui improvingrecognitionaccuracyofpesticidesingroundwaterbyapplyingtradaboosttransferlearningmethod AT wangbingyang improvingrecognitionaccuracyofpesticidesingroundwaterbyapplyingtradaboosttransferlearningmethod AT yangxiao improvingrecognitionaccuracyofpesticidesingroundwaterbyapplyingtradaboosttransferlearningmethod AT wengxiaohui improvingrecognitionaccuracyofpesticidesingroundwaterbyapplyingtradaboosttransferlearningmethod AT changzhiyong improvingrecognitionaccuracyofpesticidesingroundwaterbyapplyingtradaboosttransferlearningmethod |