Cargando…

Automatic Piecewise Extreme Learning Machine-Based Model for S-Parameters of RF Power Amplifier

This paper presents an automatic piecewise (Auto-PW) extreme learning machine (ELM) method for S-parameters modeling radio-frequency (RF) power amplifiers (PAs). A strategy based on splitting regions at the changing points of concave-convex characteristics is proposed, where each region adopts a pie...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lulu, Zhou, Shaohua, Fang, Wenrao, Huang, Wenhua, Yang, Zhiqiang, Fu, Chao, Liu, Changkun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144110/
https://www.ncbi.nlm.nih.gov/pubmed/37421073
http://dx.doi.org/10.3390/mi14040840
_version_ 1785034023487143936
author Wang, Lulu
Zhou, Shaohua
Fang, Wenrao
Huang, Wenhua
Yang, Zhiqiang
Fu, Chao
Liu, Changkun
author_facet Wang, Lulu
Zhou, Shaohua
Fang, Wenrao
Huang, Wenhua
Yang, Zhiqiang
Fu, Chao
Liu, Changkun
author_sort Wang, Lulu
collection PubMed
description This paper presents an automatic piecewise (Auto-PW) extreme learning machine (ELM) method for S-parameters modeling radio-frequency (RF) power amplifiers (PAs). A strategy based on splitting regions at the changing points of concave-convex characteristics is proposed, where each region adopts a piecewise ELM model. The verification is carried out with S-parameters measured on a 2.2–6.5 GHz complementary metal oxide semiconductor (CMOS) PA. Compared to the long-short term memory (LSTM), support vector regression (SVR), and conventional ELM modeling methods, the proposed method performs excellently. For example, the modeling speed is two orders of magnitude faster than SVR and LSTM, and the modeling accuracy is more than one order of magnitude higher than ELM.
format Online
Article
Text
id pubmed-10144110
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101441102023-04-29 Automatic Piecewise Extreme Learning Machine-Based Model for S-Parameters of RF Power Amplifier Wang, Lulu Zhou, Shaohua Fang, Wenrao Huang, Wenhua Yang, Zhiqiang Fu, Chao Liu, Changkun Micromachines (Basel) Communication This paper presents an automatic piecewise (Auto-PW) extreme learning machine (ELM) method for S-parameters modeling radio-frequency (RF) power amplifiers (PAs). A strategy based on splitting regions at the changing points of concave-convex characteristics is proposed, where each region adopts a piecewise ELM model. The verification is carried out with S-parameters measured on a 2.2–6.5 GHz complementary metal oxide semiconductor (CMOS) PA. Compared to the long-short term memory (LSTM), support vector regression (SVR), and conventional ELM modeling methods, the proposed method performs excellently. For example, the modeling speed is two orders of magnitude faster than SVR and LSTM, and the modeling accuracy is more than one order of magnitude higher than ELM. MDPI 2023-04-13 /pmc/articles/PMC10144110/ /pubmed/37421073 http://dx.doi.org/10.3390/mi14040840 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Wang, Lulu
Zhou, Shaohua
Fang, Wenrao
Huang, Wenhua
Yang, Zhiqiang
Fu, Chao
Liu, Changkun
Automatic Piecewise Extreme Learning Machine-Based Model for S-Parameters of RF Power Amplifier
title Automatic Piecewise Extreme Learning Machine-Based Model for S-Parameters of RF Power Amplifier
title_full Automatic Piecewise Extreme Learning Machine-Based Model for S-Parameters of RF Power Amplifier
title_fullStr Automatic Piecewise Extreme Learning Machine-Based Model for S-Parameters of RF Power Amplifier
title_full_unstemmed Automatic Piecewise Extreme Learning Machine-Based Model for S-Parameters of RF Power Amplifier
title_short Automatic Piecewise Extreme Learning Machine-Based Model for S-Parameters of RF Power Amplifier
title_sort automatic piecewise extreme learning machine-based model for s-parameters of rf power amplifier
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144110/
https://www.ncbi.nlm.nih.gov/pubmed/37421073
http://dx.doi.org/10.3390/mi14040840
work_keys_str_mv AT wanglulu automaticpiecewiseextremelearningmachinebasedmodelforsparametersofrfpoweramplifier
AT zhoushaohua automaticpiecewiseextremelearningmachinebasedmodelforsparametersofrfpoweramplifier
AT fangwenrao automaticpiecewiseextremelearningmachinebasedmodelforsparametersofrfpoweramplifier
AT huangwenhua automaticpiecewiseextremelearningmachinebasedmodelforsparametersofrfpoweramplifier
AT yangzhiqiang automaticpiecewiseextremelearningmachinebasedmodelforsparametersofrfpoweramplifier
AT fuchao automaticpiecewiseextremelearningmachinebasedmodelforsparametersofrfpoweramplifier
AT liuchangkun automaticpiecewiseextremelearningmachinebasedmodelforsparametersofrfpoweramplifier