Cargando…
Enhancing Tool Wear Prediction Accuracy Using Walsh–Hadamard Transform, DCGAN and Dragonfly Algorithm-Based Feature Selection
Tool wear is an important concern in the manufacturing sector that leads to quality loss, lower productivity, and increased downtime. In recent years, there has been a rise in the popularity of implementing TCM systems using various signal processing methods and machine learning algorithms. In the p...
Autores principales: | Shah, Milind, Borade, Himanshu, Sanghavi, Vedant, Purohit, Anshuman, Wankhede, Vishal, Vakharia, Vinay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144248/ https://www.ncbi.nlm.nih.gov/pubmed/37112174 http://dx.doi.org/10.3390/s23083833 |
Ejemplares similares
-
Méthodes rapides de transformation du signal: Fourier, Walsh, Hadamard, Haar
por: Lifermann, Jean
Publicado: (1979) -
Ant Colony Optimization Implementation for Reversible Synthesis in Walsh-Hadamard Domain
por: Podlaski, Krzysztof
Publicado: (2020) -
Detection of Focal and Non-Focal Electroencephalogram Signals Using Fast Walsh-Hadamard Transform and Artificial Neural Network
por: J., Prasanna, et al.
Publicado: (2020) -
Hadamard Transforms
por: Agaian, Sos, et al.
Publicado: (2011) -
Hadamard transform optics
por: Harwit, Martin
Publicado: (2012)