Cargando…
A Shallow Autoencoder Framework for Epileptic Seizure Detection in EEG Signals
This paper presents a trainable hybrid approach involving a shallow autoencoder (AE) and a conventional classifier for epileptic seizure detection. The signal segments of a channel of electroencephalogram (EEG) (EEG epochs) are classified as epileptic and non-epileptic by employing its encoded AE re...
Autores principales: | Khan, Gul Hameed, Khan, Nadeem Ahmad, Altaf, Muhammad Awais Bin, Abbasi, Qammer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144298/ https://www.ncbi.nlm.nih.gov/pubmed/37112452 http://dx.doi.org/10.3390/s23084112 |
Ejemplares similares
-
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023) -
Epileptic seizures
por: Anwar, Haleema, et al.
Publicado: (2020) -
Deep-EEG: An Optimized and Robust Framework and Method for EEG-Based Diagnosis of Epileptic Seizure
por: Mir, Waseem Ahmad, et al.
Publicado: (2023) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
A deep learning framework for epileptic seizure detection based on neonatal EEG signals
por: Gramacki, Artur, et al.
Publicado: (2022)