Cargando…

The Antimicrobial Potential and Aquaculture Wastewater Treatment Ability of Penaeidins 3a Transgenic Duckweed

With the development of aquaculture, wastewater treatment and diseases have been paid more and more attention. The question of how to improve the immunity of aquatic species, as well as treat aquaculture wastewater, has become an urgent problem. In this study, duckweed with a high protein content (3...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Lin, Luo, Ximeng, Sun, Jinge, Ma, Xu, Ren, Qiuting, Wang, Yaya, Wang, Wenqiao, He, Yuman, Li, Qingqing, Han, Bing, Yu, Yiqi, Sun, Jinsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144588/
https://www.ncbi.nlm.nih.gov/pubmed/37111939
http://dx.doi.org/10.3390/plants12081715
Descripción
Sumario:With the development of aquaculture, wastewater treatment and diseases have been paid more and more attention. The question of how to improve the immunity of aquatic species, as well as treat aquaculture wastewater, has become an urgent problem. In this study, duckweed with a high protein content (37.4%) (Lemna turionifera 5511) has been employed as a feedstock for aquatic wastewater treatment and the production of antimicrobial peptides. Penaeidins 3a (Pen3a), from Litopenaeus vannamei, were expressed under the control of CaMV-35S promoter in duckweed. Bacteriostatic testing using the Pen3a duckweed extract showed its antibacterial activity against Escherichia coli and Staphylococcus aureus. Transcriptome analysis of wild type (WT) duckweed and Pen3a duckweed showed different results, and the protein metabolic process was the most up-regulated by differential expression genes (DEGs). In Pen3a transgenic duckweed, the expression of sphingolipid metabolism and phagocytosis process-related genes have been significantly up-regulated. Quantitative proteomics suggested a remarkable difference in protein enrichment in the metabolic pathway. Pen3a duckweed decreased the bacterial number, and effectively inhibited the growth of Nitrospirae. Additionally, Pen3a duckweed displayed better growth in the lake. The study showed the nutritional and antibacterial value of duckweed as an animal feed ingredient.