Cargando…
Preparation and Properties of (Sc(2)O(3)-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections
Due to their high porosity, large specific surface area, and structural similarity with the extracellular matrix (ECM), electrospun nanofiber membranes are often endowed with the antibacterial properties for biomedical applications. The purpose of this study was to synthesize nano-structured Sc2O3-M...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144714/ https://www.ncbi.nlm.nih.gov/pubmed/37108812 http://dx.doi.org/10.3390/ijms24087649 |
_version_ | 1785034161999839232 |
---|---|
author | Liu, Yanjing Li, Xiyue Liu, Yuezhou Huang, Yaping Wang, Fuming Qian, Yongfang Wang, Ying |
author_facet | Liu, Yanjing Li, Xiyue Liu, Yuezhou Huang, Yaping Wang, Fuming Qian, Yongfang Wang, Ying |
author_sort | Liu, Yanjing |
collection | PubMed |
description | Due to their high porosity, large specific surface area, and structural similarity with the extracellular matrix (ECM), electrospun nanofiber membranes are often endowed with the antibacterial properties for biomedical applications. The purpose of this study was to synthesize nano-structured Sc2O3-MgO by doping Sc(3+), calcining at 600 °C, and then loading it onto the PCL/PVP substrates with electrospinning technology with the aim of developing new efficient antibacterial nanofiber membranes for tissue engineering. A scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) were used to study the morphology of all formulations and analyze the types and contents of the elements, and an X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) were used for further analysis. The experimental results showed that the PCL/PVP (SMCV-2.0) nanofibers loaded with 2.0 wt% Sc(2)O(3)-MgO were smooth and homogeneous with an average diameter of 252.6 nm; the antibacterial test indicated that a low load concentration of 2.0 wt% Sc2O3-MgO in PCL/PVP (SMCV-2.0) showed a 100% antibacterial rate against Escherichia coli (E. coli). |
format | Online Article Text |
id | pubmed-10144714 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101447142023-04-29 Preparation and Properties of (Sc(2)O(3)-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections Liu, Yanjing Li, Xiyue Liu, Yuezhou Huang, Yaping Wang, Fuming Qian, Yongfang Wang, Ying Int J Mol Sci Article Due to their high porosity, large specific surface area, and structural similarity with the extracellular matrix (ECM), electrospun nanofiber membranes are often endowed with the antibacterial properties for biomedical applications. The purpose of this study was to synthesize nano-structured Sc2O3-MgO by doping Sc(3+), calcining at 600 °C, and then loading it onto the PCL/PVP substrates with electrospinning technology with the aim of developing new efficient antibacterial nanofiber membranes for tissue engineering. A scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) were used to study the morphology of all formulations and analyze the types and contents of the elements, and an X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) were used for further analysis. The experimental results showed that the PCL/PVP (SMCV-2.0) nanofibers loaded with 2.0 wt% Sc(2)O(3)-MgO were smooth and homogeneous with an average diameter of 252.6 nm; the antibacterial test indicated that a low load concentration of 2.0 wt% Sc2O3-MgO in PCL/PVP (SMCV-2.0) showed a 100% antibacterial rate against Escherichia coli (E. coli). MDPI 2023-04-21 /pmc/articles/PMC10144714/ /pubmed/37108812 http://dx.doi.org/10.3390/ijms24087649 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Yanjing Li, Xiyue Liu, Yuezhou Huang, Yaping Wang, Fuming Qian, Yongfang Wang, Ying Preparation and Properties of (Sc(2)O(3)-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections |
title | Preparation and Properties of (Sc(2)O(3)-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections |
title_full | Preparation and Properties of (Sc(2)O(3)-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections |
title_fullStr | Preparation and Properties of (Sc(2)O(3)-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections |
title_full_unstemmed | Preparation and Properties of (Sc(2)O(3)-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections |
title_short | Preparation and Properties of (Sc(2)O(3)-MgO)/Pcl/Pvp Electrospun Nanofiber Membranes for the Inhibition of Escherichia coli Infections |
title_sort | preparation and properties of (sc(2)o(3)-mgo)/pcl/pvp electrospun nanofiber membranes for the inhibition of escherichia coli infections |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144714/ https://www.ncbi.nlm.nih.gov/pubmed/37108812 http://dx.doi.org/10.3390/ijms24087649 |
work_keys_str_mv | AT liuyanjing preparationandpropertiesofsc2o3mgopclpvpelectrospunnanofibermembranesfortheinhibitionofescherichiacoliinfections AT lixiyue preparationandpropertiesofsc2o3mgopclpvpelectrospunnanofibermembranesfortheinhibitionofescherichiacoliinfections AT liuyuezhou preparationandpropertiesofsc2o3mgopclpvpelectrospunnanofibermembranesfortheinhibitionofescherichiacoliinfections AT huangyaping preparationandpropertiesofsc2o3mgopclpvpelectrospunnanofibermembranesfortheinhibitionofescherichiacoliinfections AT wangfuming preparationandpropertiesofsc2o3mgopclpvpelectrospunnanofibermembranesfortheinhibitionofescherichiacoliinfections AT qianyongfang preparationandpropertiesofsc2o3mgopclpvpelectrospunnanofibermembranesfortheinhibitionofescherichiacoliinfections AT wangying preparationandpropertiesofsc2o3mgopclpvpelectrospunnanofibermembranesfortheinhibitionofescherichiacoliinfections |