Cargando…
Recognition of Hand Gestures Based on EMG Signals with Deep and Double-Deep Q-Networks
In recent years, hand gesture recognition (HGR) technologies that use electromyography (EMG) signals have been of considerable interest in developing human–machine interfaces. Most state-of-the-art HGR approaches are based mainly on supervised machine learning (ML). However, the use of reinforcement...
Autores principales: | Valdivieso Caraguay, Ángel Leonardo, Vásconez, Juan Pablo, Barona López, Lorena Isabel, Benalcázar, Marco E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144727/ https://www.ncbi.nlm.nih.gov/pubmed/37112246 http://dx.doi.org/10.3390/s23083905 |
Ejemplares similares
-
Hand Gesture Recognition Using EMG-IMU Signals and Deep Q-Networks
por: Vásconez, Juan Pablo, et al.
Publicado: (2022) -
A Deep Q-Network based hand gesture recognition system for control of robotic platforms
por: Cruz, Patricio J., et al.
Publicado: (2023) -
An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems
por: López, Lorena Isabel Barona, et al.
Publicado: (2020) -
Deep learning and session-specific rapid recalibration for dynamic hand gesture recognition from EMG
por: Karrenbach, Maxim, et al.
Publicado: (2022) -
putEMG—A Surface Electromyography Hand Gesture Recognition Dataset
por: Kaczmarek, Piotr, et al.
Publicado: (2019)