Cargando…
Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications
Organic olvent-tolerant strains of the Gram-negative bacterial genus Pseudomonas are discussed as potential biocatalysts for the biotechnological production of various chemicals. However, many current strains with the highest tolerance are belonging to the species P. putida and are classified as bio...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144732/ https://www.ncbi.nlm.nih.gov/pubmed/37110260 http://dx.doi.org/10.3390/microorganisms11040837 |
_version_ | 1785034164870840320 |
---|---|
author | Cárdenas Espinosa, María José Schmidgall, Tabea Pohl, Jessica Wagner, Georg Wynands, Benedikt Wierckx, Nick Heipieper, Hermann J. Eberlein, Christian |
author_facet | Cárdenas Espinosa, María José Schmidgall, Tabea Pohl, Jessica Wagner, Georg Wynands, Benedikt Wierckx, Nick Heipieper, Hermann J. Eberlein, Christian |
author_sort | Cárdenas Espinosa, María José |
collection | PubMed |
description | Organic olvent-tolerant strains of the Gram-negative bacterial genus Pseudomonas are discussed as potential biocatalysts for the biotechnological production of various chemicals. However, many current strains with the highest tolerance are belonging to the species P. putida and are classified as biosafety level 2 strains, which makes them uninteresting for the biotechnological industry. Therefore, it is necessary to identify other biosafety level 1 Pseudomonas strains with high tolerance towards solvents and other forms of stress, which are suitable for establishing production platforms of biotechnological processes. In order to exploit the native potential of Pseudomonas as a microbial cell factory, the biosafety level 1 strain P. taiwanensis VLB120 and its genome-reduced chassis (GRC) variants as well as the plastic-degrading strain P. capeferrum TDA1 were assessed regarding their tolerance towards different n-alkanols (1-butanol, 1-hexanol, 1-octanol, 1-decanol). Toxicity of the solvents was investigated by their effects on bacterial growth rates given as the EC50 concentrations. Hereby, both toxicities as well as the adaptive responses of P. taiwanensis GRC3 and P. capeferrum TDA1 showed EC50 values up to two-fold higher than those previously detected for P. putida DOT-T1E (biosafety level 2), one of the best described solvent-tolerant bacteria. Furthermore, in two-phase solvent systems, all the evaluated strains were adapted to 1-decanol as a second organic phase (i.e., OD(560) was at least 0.5 after 24 h of incubation with 1% (v/v) 1-decanol), which shows the potential use of these strains as platforms for the bio-production of a wide variety of chemicals at industrial level. |
format | Online Article Text |
id | pubmed-10144732 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101447322023-04-29 Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications Cárdenas Espinosa, María José Schmidgall, Tabea Pohl, Jessica Wagner, Georg Wynands, Benedikt Wierckx, Nick Heipieper, Hermann J. Eberlein, Christian Microorganisms Article Organic olvent-tolerant strains of the Gram-negative bacterial genus Pseudomonas are discussed as potential biocatalysts for the biotechnological production of various chemicals. However, many current strains with the highest tolerance are belonging to the species P. putida and are classified as biosafety level 2 strains, which makes them uninteresting for the biotechnological industry. Therefore, it is necessary to identify other biosafety level 1 Pseudomonas strains with high tolerance towards solvents and other forms of stress, which are suitable for establishing production platforms of biotechnological processes. In order to exploit the native potential of Pseudomonas as a microbial cell factory, the biosafety level 1 strain P. taiwanensis VLB120 and its genome-reduced chassis (GRC) variants as well as the plastic-degrading strain P. capeferrum TDA1 were assessed regarding their tolerance towards different n-alkanols (1-butanol, 1-hexanol, 1-octanol, 1-decanol). Toxicity of the solvents was investigated by their effects on bacterial growth rates given as the EC50 concentrations. Hereby, both toxicities as well as the adaptive responses of P. taiwanensis GRC3 and P. capeferrum TDA1 showed EC50 values up to two-fold higher than those previously detected for P. putida DOT-T1E (biosafety level 2), one of the best described solvent-tolerant bacteria. Furthermore, in two-phase solvent systems, all the evaluated strains were adapted to 1-decanol as a second organic phase (i.e., OD(560) was at least 0.5 after 24 h of incubation with 1% (v/v) 1-decanol), which shows the potential use of these strains as platforms for the bio-production of a wide variety of chemicals at industrial level. MDPI 2023-03-25 /pmc/articles/PMC10144732/ /pubmed/37110260 http://dx.doi.org/10.3390/microorganisms11040837 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cárdenas Espinosa, María José Schmidgall, Tabea Pohl, Jessica Wagner, Georg Wynands, Benedikt Wierckx, Nick Heipieper, Hermann J. Eberlein, Christian Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications |
title | Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications |
title_full | Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications |
title_fullStr | Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications |
title_full_unstemmed | Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications |
title_short | Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications |
title_sort | assessment of new and genome-reduced pseudomonas strains regarding their robustness as chassis in biotechnological applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144732/ https://www.ncbi.nlm.nih.gov/pubmed/37110260 http://dx.doi.org/10.3390/microorganisms11040837 |
work_keys_str_mv | AT cardenasespinosamariajose assessmentofnewandgenomereducedpseudomonasstrainsregardingtheirrobustnessaschassisinbiotechnologicalapplications AT schmidgalltabea assessmentofnewandgenomereducedpseudomonasstrainsregardingtheirrobustnessaschassisinbiotechnologicalapplications AT pohljessica assessmentofnewandgenomereducedpseudomonasstrainsregardingtheirrobustnessaschassisinbiotechnologicalapplications AT wagnergeorg assessmentofnewandgenomereducedpseudomonasstrainsregardingtheirrobustnessaschassisinbiotechnologicalapplications AT wynandsbenedikt assessmentofnewandgenomereducedpseudomonasstrainsregardingtheirrobustnessaschassisinbiotechnologicalapplications AT wierckxnick assessmentofnewandgenomereducedpseudomonasstrainsregardingtheirrobustnessaschassisinbiotechnologicalapplications AT heipieperhermannj assessmentofnewandgenomereducedpseudomonasstrainsregardingtheirrobustnessaschassisinbiotechnologicalapplications AT eberleinchristian assessmentofnewandgenomereducedpseudomonasstrainsregardingtheirrobustnessaschassisinbiotechnologicalapplications |