Cargando…
Reinforcement Learning-Based Approach for Minimizing Energy Loss of Driving Platoon Decisions †
Reinforcement learning (RL) methods for energy saving and greening have recently appeared in the field of autonomous driving. In inter-vehicle communication (IVC), a feasible and increasingly popular research direction of RL is to obtain the optimal action decision of agents in a special environment...
Autores principales: | Gu, Zhiru, Liu, Zhongwei, Wang, Qi, Mao, Qiyun, Shuai, Zhikang, Ma, Ziji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144777/ https://www.ncbi.nlm.nih.gov/pubmed/37112514 http://dx.doi.org/10.3390/s23084176 |
Ejemplares similares
-
Comparative Study of Cooperative Platoon Merging Control Based on Reinforcement Learning
por: Irshayyid, Ali, et al.
Publicado: (2023) -
Feudalistic Platooning: Subdivide Platoons, Unite Networks, and Conquer Efficiency and Reliability
por: Renzler, Tobias, et al.
Publicado: (2022) -
Multi-Task End-to-End Self-Driving Architecture for CAV Platoons
por: Huch, Sebastian, et al.
Publicado: (2021) -
Ecological driving on multiphase trajectories and multiobjective optimization for autonomous electric vehicle platoon
por: Xiaofeng, Tang
Publicado: (2022) -
A Swarming Approach to Optimize the One-Hop Delay in Smart Driving Inter-Platoon Communications
por: Wu, Qiong, et al.
Publicado: (2018)