Cargando…
A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT
Network intrusion detection technology is key to cybersecurity regarding the Internet of Things (IoT). The traditional intrusion detection system targeting Binary or Multi-Classification can detect known attacks, but it is difficult to resist unknown attacks (such as zero-day attacks). Unknown attac...
Autores principales: | Yao, Wenbin, Hu, Longcan, Hou, Yingying, Li, Xiaoyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144792/ https://www.ncbi.nlm.nih.gov/pubmed/37112482 http://dx.doi.org/10.3390/s23084141 |
Ejemplares similares
-
Cross-Layer Federated Learning for Lightweight IoT Intrusion Detection Systems
por: Hajj, Suzan, et al.
Publicado: (2023) -
Conditional Variational Autoencoder for Prediction and Feature Recovery Applied to Intrusion Detection in IoT
por: Lopez-Martin, Manuel, et al.
Publicado: (2017) -
Realguard: A Lightweight Network Intrusion Detection System for IoT Gateways
por: Nguyen, Xuan-Ha, et al.
Publicado: (2022) -
A lightweight intrusion detection method for IoT based on deep learning and dynamic quantization
por: Wang, Zhendong, et al.
Publicado: (2023) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022)