Cargando…
Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats
Global loss of the neuropeptide Neuromedin-U (NMU) is associated with increased bone formation and high bone mass in male and female mice by twelve weeks of age, suggesting that NMU suppresses osteoblast differentiation and/or activity in vivo. NMU is highly expressed in numerous anatomical location...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144869/ https://www.ncbi.nlm.nih.gov/pubmed/37109447 http://dx.doi.org/10.3390/life13040918 |
_version_ | 1785034197417590784 |
---|---|
author | Born-Evers, Gabriella Orr, Ashley L. Hulsey, Elizabeth Q. Squire, Maria E. Hum, Julia M. Plotkin, Lilian Sampson, Catherine Hommel, Jonathan Lowery, Jonathan W. |
author_facet | Born-Evers, Gabriella Orr, Ashley L. Hulsey, Elizabeth Q. Squire, Maria E. Hum, Julia M. Plotkin, Lilian Sampson, Catherine Hommel, Jonathan Lowery, Jonathan W. |
author_sort | Born-Evers, Gabriella |
collection | PubMed |
description | Global loss of the neuropeptide Neuromedin-U (NMU) is associated with increased bone formation and high bone mass in male and female mice by twelve weeks of age, suggesting that NMU suppresses osteoblast differentiation and/or activity in vivo. NMU is highly expressed in numerous anatomical locations including the skeleton and the hypothalamus. This raises the possibility that NMU exerts indirect effects on bone remodeling from an extra-skeletal location such as the brain. Thus, in the present study we used microinjection to deliver viruses carrying short-hairpin RNA designed to knockdown Nmu expression in the hypothalamus of 8-week-old male rats and evaluated the effects on bone mass in the peripheral skeleton. Quantitative RT-PCR confirmed approximately 92% knockdown of Nmu in the hypothalamus. However, after six weeks, micro computed tomography on tibiae from Nmu-knockdown rats demonstrated no significant change in trabecular or cortical bone mass as compared to controls. These findings are corroborated by histomorphometric analyses which indicate no differences in osteoblast or osteoclast parameters between controls and Nmu-knockdown samples. Collectively, these data suggest that hypothalamus-derived NMU does not regulate bone remodeling in the postnatal skeleton. Future studies are necessary to delineate the direct versus indirect effects of NMU on bone remodeling. |
format | Online Article Text |
id | pubmed-10144869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101448692023-04-29 Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats Born-Evers, Gabriella Orr, Ashley L. Hulsey, Elizabeth Q. Squire, Maria E. Hum, Julia M. Plotkin, Lilian Sampson, Catherine Hommel, Jonathan Lowery, Jonathan W. Life (Basel) Communication Global loss of the neuropeptide Neuromedin-U (NMU) is associated with increased bone formation and high bone mass in male and female mice by twelve weeks of age, suggesting that NMU suppresses osteoblast differentiation and/or activity in vivo. NMU is highly expressed in numerous anatomical locations including the skeleton and the hypothalamus. This raises the possibility that NMU exerts indirect effects on bone remodeling from an extra-skeletal location such as the brain. Thus, in the present study we used microinjection to deliver viruses carrying short-hairpin RNA designed to knockdown Nmu expression in the hypothalamus of 8-week-old male rats and evaluated the effects on bone mass in the peripheral skeleton. Quantitative RT-PCR confirmed approximately 92% knockdown of Nmu in the hypothalamus. However, after six weeks, micro computed tomography on tibiae from Nmu-knockdown rats demonstrated no significant change in trabecular or cortical bone mass as compared to controls. These findings are corroborated by histomorphometric analyses which indicate no differences in osteoblast or osteoclast parameters between controls and Nmu-knockdown samples. Collectively, these data suggest that hypothalamus-derived NMU does not regulate bone remodeling in the postnatal skeleton. Future studies are necessary to delineate the direct versus indirect effects of NMU on bone remodeling. MDPI 2023-03-31 /pmc/articles/PMC10144869/ /pubmed/37109447 http://dx.doi.org/10.3390/life13040918 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Born-Evers, Gabriella Orr, Ashley L. Hulsey, Elizabeth Q. Squire, Maria E. Hum, Julia M. Plotkin, Lilian Sampson, Catherine Hommel, Jonathan Lowery, Jonathan W. Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats |
title | Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats |
title_full | Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats |
title_fullStr | Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats |
title_full_unstemmed | Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats |
title_short | Examining the Role of Hypothalamus-Derived Neuromedin-U (NMU) in Bone Remodeling of Rats |
title_sort | examining the role of hypothalamus-derived neuromedin-u (nmu) in bone remodeling of rats |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144869/ https://www.ncbi.nlm.nih.gov/pubmed/37109447 http://dx.doi.org/10.3390/life13040918 |
work_keys_str_mv | AT borneversgabriella examiningtheroleofhypothalamusderivedneuromedinunmuinboneremodelingofrats AT orrashleyl examiningtheroleofhypothalamusderivedneuromedinunmuinboneremodelingofrats AT hulseyelizabethq examiningtheroleofhypothalamusderivedneuromedinunmuinboneremodelingofrats AT squiremariae examiningtheroleofhypothalamusderivedneuromedinunmuinboneremodelingofrats AT humjuliam examiningtheroleofhypothalamusderivedneuromedinunmuinboneremodelingofrats AT plotkinlilian examiningtheroleofhypothalamusderivedneuromedinunmuinboneremodelingofrats AT sampsoncatherine examiningtheroleofhypothalamusderivedneuromedinunmuinboneremodelingofrats AT hommeljonathan examiningtheroleofhypothalamusderivedneuromedinunmuinboneremodelingofrats AT loweryjonathanw examiningtheroleofhypothalamusderivedneuromedinunmuinboneremodelingofrats |