Cargando…
MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort stud...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144896/ https://www.ncbi.nlm.nih.gov/pubmed/37117235 http://dx.doi.org/10.1038/s41598-023-34126-7 |
_version_ | 1785034203975385088 |
---|---|
author | Gallardo-Rincón, Héctor Ríos-Blancas, María Jesús Ortega-Montiel, Janinne Montoya, Alejandra Martinez-Juarez, Luis Alberto Lomelín-Gascón, Julieta Saucedo-Martínez, Rodrigo Mújica-Rosales, Ricardo Galicia-Hernández, Victoria Morales-Juárez, Linda Illescas-Correa, Lucía Marcela Ruiz-Cabrera, Ixel Lorena Díaz-Martínez, Daniel Alberto Magos-Vázquez, Francisco Javier Ávila, Edwin Oswaldo Vargas Benitez-Herrera, Alejandro Efraín Reyes-Gómez, Diana Carmona-Ramos, María Concepción Hernández-González, Laura Romero-Islas, Oscar Muñoz, Enrique Reyes Tapia-Conyer, Roberto |
author_facet | Gallardo-Rincón, Héctor Ríos-Blancas, María Jesús Ortega-Montiel, Janinne Montoya, Alejandra Martinez-Juarez, Luis Alberto Lomelín-Gascón, Julieta Saucedo-Martínez, Rodrigo Mújica-Rosales, Ricardo Galicia-Hernández, Victoria Morales-Juárez, Linda Illescas-Correa, Lucía Marcela Ruiz-Cabrera, Ixel Lorena Díaz-Martínez, Daniel Alberto Magos-Vázquez, Francisco Javier Ávila, Edwin Oswaldo Vargas Benitez-Herrera, Alejandro Efraín Reyes-Gómez, Diana Carmona-Ramos, María Concepción Hernández-González, Laura Romero-Islas, Oscar Muñoz, Enrique Reyes Tapia-Conyer, Roberto |
author_sort | Gallardo-Rincón, Héctor |
collection | PubMed |
description | Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort study ‘Cuido mi embarazo’. A machine-learning-driven method was used to select the best predictive variables for GDM risk: age, family history of type 2 diabetes, previous diagnosis of hypertension, pregestational body mass index, gestational week, parity, birth weight of last child, and random capillary glucose. An artificial neural network approach was then used to build the model, which achieved a high level of accuracy (70.3%) and sensitivity (83.3%) for identifying women at high risk of developing GDM. This AI-based model will be applied throughout Mexico to improve the timing and quality of GDM interventions. Given the ease of obtaining the model variables, this model is expected to be clinically strategic, allowing prioritization of preventative treatment and promising a paradigm shift in prevention and primary healthcare during pregnancy. This AI model uses variables that are easily collected to identify pregnant women at risk of developing GDM with a high level of accuracy and precision. |
format | Online Article Text |
id | pubmed-10144896 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101448962023-04-30 MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women Gallardo-Rincón, Héctor Ríos-Blancas, María Jesús Ortega-Montiel, Janinne Montoya, Alejandra Martinez-Juarez, Luis Alberto Lomelín-Gascón, Julieta Saucedo-Martínez, Rodrigo Mújica-Rosales, Ricardo Galicia-Hernández, Victoria Morales-Juárez, Linda Illescas-Correa, Lucía Marcela Ruiz-Cabrera, Ixel Lorena Díaz-Martínez, Daniel Alberto Magos-Vázquez, Francisco Javier Ávila, Edwin Oswaldo Vargas Benitez-Herrera, Alejandro Efraín Reyes-Gómez, Diana Carmona-Ramos, María Concepción Hernández-González, Laura Romero-Islas, Oscar Muñoz, Enrique Reyes Tapia-Conyer, Roberto Sci Rep Article Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort study ‘Cuido mi embarazo’. A machine-learning-driven method was used to select the best predictive variables for GDM risk: age, family history of type 2 diabetes, previous diagnosis of hypertension, pregestational body mass index, gestational week, parity, birth weight of last child, and random capillary glucose. An artificial neural network approach was then used to build the model, which achieved a high level of accuracy (70.3%) and sensitivity (83.3%) for identifying women at high risk of developing GDM. This AI-based model will be applied throughout Mexico to improve the timing and quality of GDM interventions. Given the ease of obtaining the model variables, this model is expected to be clinically strategic, allowing prioritization of preventative treatment and promising a paradigm shift in prevention and primary healthcare during pregnancy. This AI model uses variables that are easily collected to identify pregnant women at risk of developing GDM with a high level of accuracy and precision. Nature Publishing Group UK 2023-04-28 /pmc/articles/PMC10144896/ /pubmed/37117235 http://dx.doi.org/10.1038/s41598-023-34126-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Gallardo-Rincón, Héctor Ríos-Blancas, María Jesús Ortega-Montiel, Janinne Montoya, Alejandra Martinez-Juarez, Luis Alberto Lomelín-Gascón, Julieta Saucedo-Martínez, Rodrigo Mújica-Rosales, Ricardo Galicia-Hernández, Victoria Morales-Juárez, Linda Illescas-Correa, Lucía Marcela Ruiz-Cabrera, Ixel Lorena Díaz-Martínez, Daniel Alberto Magos-Vázquez, Francisco Javier Ávila, Edwin Oswaldo Vargas Benitez-Herrera, Alejandro Efraín Reyes-Gómez, Diana Carmona-Ramos, María Concepción Hernández-González, Laura Romero-Islas, Oscar Muñoz, Enrique Reyes Tapia-Conyer, Roberto MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women |
title | MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women |
title_full | MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women |
title_fullStr | MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women |
title_full_unstemmed | MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women |
title_short | MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women |
title_sort | mido gdm: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in mexican women |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144896/ https://www.ncbi.nlm.nih.gov/pubmed/37117235 http://dx.doi.org/10.1038/s41598-023-34126-7 |
work_keys_str_mv | AT gallardorinconhector midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT riosblancasmariajesus midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT ortegamontieljaninne midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT montoyaalejandra midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT martinezjuarezluisalberto midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT lomelingasconjulieta midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT saucedomartinezrodrigo midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT mujicarosalesricardo midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT galiciahernandezvictoria midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT moralesjuarezlinda midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT illescascorrealuciamarcela midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT ruizcabreraixellorena midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT diazmartinezdanielalberto midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT magosvazquezfranciscojavier midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT avilaedwinoswaldovargas midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT benitezherreraalejandroefrain midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT reyesgomezdiana midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT carmonaramosmariaconcepcion midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT hernandezgonzalezlaura midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT romeroislasoscar midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT munozenriquereyes midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen AT tapiaconyerroberto midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen |