Cargando…

MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women

Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Gallardo-Rincón, Héctor, Ríos-Blancas, María Jesús, Ortega-Montiel, Janinne, Montoya, Alejandra, Martinez-Juarez, Luis Alberto, Lomelín-Gascón, Julieta, Saucedo-Martínez, Rodrigo, Mújica-Rosales, Ricardo, Galicia-Hernández, Victoria, Morales-Juárez, Linda, Illescas-Correa, Lucía Marcela, Ruiz-Cabrera, Ixel Lorena, Díaz-Martínez, Daniel Alberto, Magos-Vázquez, Francisco Javier, Ávila, Edwin Oswaldo Vargas, Benitez-Herrera, Alejandro Efraín, Reyes-Gómez, Diana, Carmona-Ramos, María Concepción, Hernández-González, Laura, Romero-Islas, Oscar, Muñoz, Enrique Reyes, Tapia-Conyer, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144896/
https://www.ncbi.nlm.nih.gov/pubmed/37117235
http://dx.doi.org/10.1038/s41598-023-34126-7
_version_ 1785034203975385088
author Gallardo-Rincón, Héctor
Ríos-Blancas, María Jesús
Ortega-Montiel, Janinne
Montoya, Alejandra
Martinez-Juarez, Luis Alberto
Lomelín-Gascón, Julieta
Saucedo-Martínez, Rodrigo
Mújica-Rosales, Ricardo
Galicia-Hernández, Victoria
Morales-Juárez, Linda
Illescas-Correa, Lucía Marcela
Ruiz-Cabrera, Ixel Lorena
Díaz-Martínez, Daniel Alberto
Magos-Vázquez, Francisco Javier
Ávila, Edwin Oswaldo Vargas
Benitez-Herrera, Alejandro Efraín
Reyes-Gómez, Diana
Carmona-Ramos, María Concepción
Hernández-González, Laura
Romero-Islas, Oscar
Muñoz, Enrique Reyes
Tapia-Conyer, Roberto
author_facet Gallardo-Rincón, Héctor
Ríos-Blancas, María Jesús
Ortega-Montiel, Janinne
Montoya, Alejandra
Martinez-Juarez, Luis Alberto
Lomelín-Gascón, Julieta
Saucedo-Martínez, Rodrigo
Mújica-Rosales, Ricardo
Galicia-Hernández, Victoria
Morales-Juárez, Linda
Illescas-Correa, Lucía Marcela
Ruiz-Cabrera, Ixel Lorena
Díaz-Martínez, Daniel Alberto
Magos-Vázquez, Francisco Javier
Ávila, Edwin Oswaldo Vargas
Benitez-Herrera, Alejandro Efraín
Reyes-Gómez, Diana
Carmona-Ramos, María Concepción
Hernández-González, Laura
Romero-Islas, Oscar
Muñoz, Enrique Reyes
Tapia-Conyer, Roberto
author_sort Gallardo-Rincón, Héctor
collection PubMed
description Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort study ‘Cuido mi embarazo’. A machine-learning-driven method was used to select the best predictive variables for GDM risk: age, family history of type 2 diabetes, previous diagnosis of hypertension, pregestational body mass index, gestational week, parity, birth weight of last child, and random capillary glucose. An artificial neural network approach was then used to build the model, which achieved a high level of accuracy (70.3%) and sensitivity (83.3%) for identifying women at high risk of developing GDM. This AI-based model will be applied throughout Mexico to improve the timing and quality of GDM interventions. Given the ease of obtaining the model variables, this model is expected to be clinically strategic, allowing prioritization of preventative treatment and promising a paradigm shift in prevention and primary healthcare during pregnancy. This AI model uses variables that are easily collected to identify pregnant women at risk of developing GDM with a high level of accuracy and precision.
format Online
Article
Text
id pubmed-10144896
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101448962023-04-30 MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women Gallardo-Rincón, Héctor Ríos-Blancas, María Jesús Ortega-Montiel, Janinne Montoya, Alejandra Martinez-Juarez, Luis Alberto Lomelín-Gascón, Julieta Saucedo-Martínez, Rodrigo Mújica-Rosales, Ricardo Galicia-Hernández, Victoria Morales-Juárez, Linda Illescas-Correa, Lucía Marcela Ruiz-Cabrera, Ixel Lorena Díaz-Martínez, Daniel Alberto Magos-Vázquez, Francisco Javier Ávila, Edwin Oswaldo Vargas Benitez-Herrera, Alejandro Efraín Reyes-Gómez, Diana Carmona-Ramos, María Concepción Hernández-González, Laura Romero-Islas, Oscar Muñoz, Enrique Reyes Tapia-Conyer, Roberto Sci Rep Article Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort study ‘Cuido mi embarazo’. A machine-learning-driven method was used to select the best predictive variables for GDM risk: age, family history of type 2 diabetes, previous diagnosis of hypertension, pregestational body mass index, gestational week, parity, birth weight of last child, and random capillary glucose. An artificial neural network approach was then used to build the model, which achieved a high level of accuracy (70.3%) and sensitivity (83.3%) for identifying women at high risk of developing GDM. This AI-based model will be applied throughout Mexico to improve the timing and quality of GDM interventions. Given the ease of obtaining the model variables, this model is expected to be clinically strategic, allowing prioritization of preventative treatment and promising a paradigm shift in prevention and primary healthcare during pregnancy. This AI model uses variables that are easily collected to identify pregnant women at risk of developing GDM with a high level of accuracy and precision. Nature Publishing Group UK 2023-04-28 /pmc/articles/PMC10144896/ /pubmed/37117235 http://dx.doi.org/10.1038/s41598-023-34126-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Gallardo-Rincón, Héctor
Ríos-Blancas, María Jesús
Ortega-Montiel, Janinne
Montoya, Alejandra
Martinez-Juarez, Luis Alberto
Lomelín-Gascón, Julieta
Saucedo-Martínez, Rodrigo
Mújica-Rosales, Ricardo
Galicia-Hernández, Victoria
Morales-Juárez, Linda
Illescas-Correa, Lucía Marcela
Ruiz-Cabrera, Ixel Lorena
Díaz-Martínez, Daniel Alberto
Magos-Vázquez, Francisco Javier
Ávila, Edwin Oswaldo Vargas
Benitez-Herrera, Alejandro Efraín
Reyes-Gómez, Diana
Carmona-Ramos, María Concepción
Hernández-González, Laura
Romero-Islas, Oscar
Muñoz, Enrique Reyes
Tapia-Conyer, Roberto
MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_full MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_fullStr MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_full_unstemmed MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_short MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
title_sort mido gdm: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in mexican women
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144896/
https://www.ncbi.nlm.nih.gov/pubmed/37117235
http://dx.doi.org/10.1038/s41598-023-34126-7
work_keys_str_mv AT gallardorinconhector midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT riosblancasmariajesus midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT ortegamontieljaninne midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT montoyaalejandra midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT martinezjuarezluisalberto midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT lomelingasconjulieta midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT saucedomartinezrodrigo midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT mujicarosalesricardo midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT galiciahernandezvictoria midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT moralesjuarezlinda midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT illescascorrealuciamarcela midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT ruizcabreraixellorena midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT diazmartinezdanielalberto midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT magosvazquezfranciscojavier midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT avilaedwinoswaldovargas midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT benitezherreraalejandroefrain midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT reyesgomezdiana midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT carmonaramosmariaconcepcion midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT hernandezgonzalezlaura midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT romeroislasoscar midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT munozenriquereyes midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen
AT tapiaconyerroberto midogdmaninnovativeartificialintelligencebasedpredictionmodelforthedevelopmentofgestationaldiabetesinmexicanwomen