Cargando…
Graph Representation Learning and Its Applications: A Survey
Graphs are data structures that effectively represent relational data in the real world. Graph representation learning is a significant task since it could facilitate various downstream tasks, such as node classification, link prediction, etc. Graph representation learning aims to map graph entities...
Autores principales: | Hoang, Van Thuy, Jeon, Hyeon-Ju, You, Eun-Soon, Yoon, Yoewon, Jung, Sungyeop, Lee, O-Joun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144941/ https://www.ncbi.nlm.nih.gov/pubmed/37112507 http://dx.doi.org/10.3390/s23084168 |
Ejemplares similares
-
Day-Ahead Hourly Solar Irradiance Forecasting Based on Multi-Attributed Spatio-Temporal Graph Convolutional Network
por: Jeon, Hyeon-Ju, et al.
Publicado: (2022) -
Graph representation learning
por: Hamilton, William L
Publicado: (2020) -
Learning graph representations of biochemical networks and its application to enzymatic link prediction
por: Jiang, Julie, et al.
Publicado: (2020) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Graph representation learning for structural proteomics
por: Fasoulis, Romanos, et al.
Publicado: (2021)