Cargando…
Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution
Deployment of deep convolutional neural networks (CNNs) in single image super-resolution (SISR) for edge computing devices is mainly hampered by the huge computational cost. In this work, we propose a lightweight image super-resolution (SR) network based on a reparameterizable multibranch bottleneck...
Autores principales: | Shen, Ying, Zheng, Weihuang, Huang, Feng, Wu, Jing, Chen, Liqiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145106/ https://www.ncbi.nlm.nih.gov/pubmed/37112303 http://dx.doi.org/10.3390/s23083963 |
Ejemplares similares
-
Spatial and Channel Aggregation Network for Lightweight Image Super-Resolution
por: Wu, Xianyu, et al.
Publicado: (2023) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021) -
Lightweight Single Image Super-Resolution with Selective Channel Processing Network
por: Zhu, Hongyu, et al.
Publicado: (2022) -
Context-aware lightweight remote-sensing image super-resolution network
por: Peng, Guangwen, et al.
Publicado: (2023) -
A Lightweight Feature Distillation and Enhancement Network for Super-Resolution Remote Sensing Images
por: Gao, Feng, et al.
Publicado: (2023)