Cargando…
A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data
Worldwide, mosquito monitoring and control programs consume large amounts of resources in the effort to minimise mosquito-borne disease incidence. On-site larval monitoring is highly effective but time consuming. A number of mechanistic models of mosquito development have been developed to reduce th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145111/ https://www.ncbi.nlm.nih.gov/pubmed/37104341 http://dx.doi.org/10.3390/tropicalmed8040215 |
_version_ | 1785034254780989440 |
---|---|
author | Staples, Kerry Richardson, Steven Neville, Peter J. Oosthuizen, Jacques |
author_facet | Staples, Kerry Richardson, Steven Neville, Peter J. Oosthuizen, Jacques |
author_sort | Staples, Kerry |
collection | PubMed |
description | Worldwide, mosquito monitoring and control programs consume large amounts of resources in the effort to minimise mosquito-borne disease incidence. On-site larval monitoring is highly effective but time consuming. A number of mechanistic models of mosquito development have been developed to reduce the reliance on larval monitoring, but none for Ross River virus, the most commonly occurring mosquito-borne disease in Australia. This research modifies existing mechanistic models for malaria vectors and applies it to a wetland field site in Southwest, Western Australia. Environmental monitoring data were applied to an enzyme kinetic model of larval mosquito development to simulate timing of adult emergence and relative population abundance of three mosquito vectors of the Ross River virus for the period of 2018–2020. The model results were compared with field measured adult mosquitoes trapped using carbon dioxide light traps. The model showed different patterns of emergence for the three mosquito species, capturing inter-seasonal and inter-year variation, and correlated well with field adult trapping data. The model provides a useful tool to investigate the effects of different weather and environmental variables on larval and adult mosquito development and can be used to investigate the possible effects of changes to short-term and long-term sea level and climate changes. |
format | Online Article Text |
id | pubmed-10145111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101451112023-04-29 A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data Staples, Kerry Richardson, Steven Neville, Peter J. Oosthuizen, Jacques Trop Med Infect Dis Article Worldwide, mosquito monitoring and control programs consume large amounts of resources in the effort to minimise mosquito-borne disease incidence. On-site larval monitoring is highly effective but time consuming. A number of mechanistic models of mosquito development have been developed to reduce the reliance on larval monitoring, but none for Ross River virus, the most commonly occurring mosquito-borne disease in Australia. This research modifies existing mechanistic models for malaria vectors and applies it to a wetland field site in Southwest, Western Australia. Environmental monitoring data were applied to an enzyme kinetic model of larval mosquito development to simulate timing of adult emergence and relative population abundance of three mosquito vectors of the Ross River virus for the period of 2018–2020. The model results were compared with field measured adult mosquitoes trapped using carbon dioxide light traps. The model showed different patterns of emergence for the three mosquito species, capturing inter-seasonal and inter-year variation, and correlated well with field adult trapping data. The model provides a useful tool to investigate the effects of different weather and environmental variables on larval and adult mosquito development and can be used to investigate the possible effects of changes to short-term and long-term sea level and climate changes. MDPI 2023-04-03 /pmc/articles/PMC10145111/ /pubmed/37104341 http://dx.doi.org/10.3390/tropicalmed8040215 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Staples, Kerry Richardson, Steven Neville, Peter J. Oosthuizen, Jacques A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data |
title | A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data |
title_full | A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data |
title_fullStr | A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data |
title_full_unstemmed | A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data |
title_short | A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data |
title_sort | multi-species simulation of mosquito disease vector development in temperate australian tidal wetlands using publicly available data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145111/ https://www.ncbi.nlm.nih.gov/pubmed/37104341 http://dx.doi.org/10.3390/tropicalmed8040215 |
work_keys_str_mv | AT stapleskerry amultispeciessimulationofmosquitodiseasevectordevelopmentintemperateaustraliantidalwetlandsusingpubliclyavailabledata AT richardsonsteven amultispeciessimulationofmosquitodiseasevectordevelopmentintemperateaustraliantidalwetlandsusingpubliclyavailabledata AT nevillepeterj amultispeciessimulationofmosquitodiseasevectordevelopmentintemperateaustraliantidalwetlandsusingpubliclyavailabledata AT oosthuizenjacques amultispeciessimulationofmosquitodiseasevectordevelopmentintemperateaustraliantidalwetlandsusingpubliclyavailabledata AT stapleskerry multispeciessimulationofmosquitodiseasevectordevelopmentintemperateaustraliantidalwetlandsusingpubliclyavailabledata AT richardsonsteven multispeciessimulationofmosquitodiseasevectordevelopmentintemperateaustraliantidalwetlandsusingpubliclyavailabledata AT nevillepeterj multispeciessimulationofmosquitodiseasevectordevelopmentintemperateaustraliantidalwetlandsusingpubliclyavailabledata AT oosthuizenjacques multispeciessimulationofmosquitodiseasevectordevelopmentintemperateaustraliantidalwetlandsusingpubliclyavailabledata |