Cargando…
Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications
The rapid development of electronic material and sensing technology has enabled research to be conducted on liquid metal-based soft sensors. The application of soft sensors is widespread and has many applications in soft robotics, smart prosthetics, and human-machine interfaces, where these sensors...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145183/ https://www.ncbi.nlm.nih.gov/pubmed/37112380 http://dx.doi.org/10.3390/s23084039 |
_version_ | 1785034271964004352 |
---|---|
author | Ghosh, Prosenjit Kumar Sundaravadivel, Prabha |
author_facet | Ghosh, Prosenjit Kumar Sundaravadivel, Prabha |
author_sort | Ghosh, Prosenjit Kumar |
collection | PubMed |
description | The rapid development of electronic material and sensing technology has enabled research to be conducted on liquid metal-based soft sensors. The application of soft sensors is widespread and has many applications in soft robotics, smart prosthetics, and human-machine interfaces, where these sensors can be integrated for precise and sensitive monitoring. Soft sensors can be easily integrated for soft robotic applications, where traditional sensors are incompatible with robotic applications as these types of sensors show large deformation and very flexible. These liquid-metal-based sensors have been widely used for biomedical, agricultural and underwater applications. In this research, we have designed and fabricated a novel soft sensor that yields microfluidic channel arrays embedded with liquid metal Galinstan alloy. First of all, the article presents different fabrication steps such as 3D modeling, printing, and liquid metal injection. Different sensing performances such as stretchability, linearity, and durability results are measured and characterized. The fabricated soft sensor demonstrated excellent stability and reliability and exhibited promising sensitivity with respect to different pressures and conditions. |
format | Online Article Text |
id | pubmed-10145183 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101451832023-04-29 Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications Ghosh, Prosenjit Kumar Sundaravadivel, Prabha Sensors (Basel) Article The rapid development of electronic material and sensing technology has enabled research to be conducted on liquid metal-based soft sensors. The application of soft sensors is widespread and has many applications in soft robotics, smart prosthetics, and human-machine interfaces, where these sensors can be integrated for precise and sensitive monitoring. Soft sensors can be easily integrated for soft robotic applications, where traditional sensors are incompatible with robotic applications as these types of sensors show large deformation and very flexible. These liquid-metal-based sensors have been widely used for biomedical, agricultural and underwater applications. In this research, we have designed and fabricated a novel soft sensor that yields microfluidic channel arrays embedded with liquid metal Galinstan alloy. First of all, the article presents different fabrication steps such as 3D modeling, printing, and liquid metal injection. Different sensing performances such as stretchability, linearity, and durability results are measured and characterized. The fabricated soft sensor demonstrated excellent stability and reliability and exhibited promising sensitivity with respect to different pressures and conditions. MDPI 2023-04-17 /pmc/articles/PMC10145183/ /pubmed/37112380 http://dx.doi.org/10.3390/s23084039 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ghosh, Prosenjit Kumar Sundaravadivel, Prabha Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications |
title | Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications |
title_full | Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications |
title_fullStr | Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications |
title_full_unstemmed | Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications |
title_short | Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications |
title_sort | stretchable sensors for soft robotic grippers in edge-intelligent iot applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145183/ https://www.ncbi.nlm.nih.gov/pubmed/37112380 http://dx.doi.org/10.3390/s23084039 |
work_keys_str_mv | AT ghoshprosenjitkumar stretchablesensorsforsoftroboticgrippersinedgeintelligentiotapplications AT sundaravadivelprabha stretchablesensorsforsoftroboticgrippersinedgeintelligentiotapplications |