Cargando…
Deep Learning Methods Applied to Drug Concentration Prediction of Olanzapine
Pharmacometrics and the utilization of population pharmacokinetics play an integral role in model-informed drug discovery and development (MIDD). Recently, there has been a growth in the application of deep learning approaches to aid in areas within MIDD. In this study, a deep learning model, LSTM-A...
Autores principales: | Khusial, Richard, Bies, Robert R., Akil, Ayman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145228/ https://www.ncbi.nlm.nih.gov/pubmed/37111625 http://dx.doi.org/10.3390/pharmaceutics15041139 |
Ejemplares similares
-
Prediction of Nephropathy in Type 2 Diabetes: An Analysis of the ACCORD Trial Applying Machine Learning Techniques
por: Rodriguez‐Romero, Violeta, et al.
Publicado: (2019) -
Genetic Variation in CYP3A43 Explains Racial Difference in Olanzapine Clearance
por: Bigos, Kristin L., et al.
Publicado: (2011) -
An interpretable stacking ensemble learning framework based on multi-dimensional data for real-time prediction of drug concentration: The example of olanzapine
por: Zhu, Xiuqing, et al.
Publicado: (2022) -
Determination of Olanzapine and N-desmethyl-olanzapine in Plasma Using a Reversed-Phase HPLC Coupled with Coulochemical Detection: Correlation of Olanzapine or N-desmethyl-olanzapine Concentration with Metabolic Parameters
por: Lu, Mong-Liang, et al.
Publicado: (2013) -
Relationship Between Plasma Olanzapine and N-Desmethyl-Olanzapine Concentration and Metabolic Parameters in Patients With Schizophrenia
por: An, Huimei, et al.
Publicado: (2022)