Cargando…
A Low-Power Analog Integrated Implementation of the Support Vector Machine Algorithm with On-Chip Learning Tested on a Bearing Fault Application
A novel analog integrated implementation of a hardware-friendly support vector machine algorithm that can be a part of a classification system is presented in this work. The utilized architecture is capable of on-chip learning, making the overall circuit completely autonomous at the cost of power an...
Autores principales: | Alimisis, Vassilis, Gennis, Georgios, Gourdouparis, Marios, Dimas, Christos, Sotiriadis, Paul P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145287/ https://www.ncbi.nlm.nih.gov/pubmed/37112319 http://dx.doi.org/10.3390/s23083978 |
Ejemplares similares
-
Nanopower Integrated Gaussian Mixture Model Classifier for Epileptic Seizure Prediction
por: Alimisis, Vassilis, et al.
Publicado: (2022) -
A Point-Matching Method of Moment with Sparse Bayesian Learning Applied and Evaluated in Dynamic Lung Electrical Impedance Tomography
por: Dimas, Christos, et al.
Publicado: (2021) -
Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm
por: Shen, Weijie, et al.
Publicado: (2023) -
Bearing Fault Diagnosis Method Based on RCMFDE-SPLR and Ocean Predator Algorithm Optimizing Support Vector Machine
por: Yi, Mingxiu, et al.
Publicado: (2022) -
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
por: Lee, Dong-Han, et al.
Publicado: (2017)