Cargando…
Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus
Ticks and tick-borne diseases constitute a substantial hazard to the livestock industry. The rising costs and lack of availability of synthetic chemical acaricides for farmers with limited resources, tick resistance to current acaricides, and residual issues in meat and milk consumed by humans furth...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145301/ https://www.ncbi.nlm.nih.gov/pubmed/37110838 http://dx.doi.org/10.3390/molecules28083606 |
_version_ | 1785034300640460800 |
---|---|
author | Malak, Nosheen Alotaibi, Bader S. Khan, Afshan Khan, Adil Ullah, Shakir Nasreen, Nasreen Niaz, Sadaf Chen, Chien-Chin |
author_facet | Malak, Nosheen Alotaibi, Bader S. Khan, Afshan Khan, Adil Ullah, Shakir Nasreen, Nasreen Niaz, Sadaf Chen, Chien-Chin |
author_sort | Malak, Nosheen |
collection | PubMed |
description | Ticks and tick-borne diseases constitute a substantial hazard to the livestock industry. The rising costs and lack of availability of synthetic chemical acaricides for farmers with limited resources, tick resistance to current acaricides, and residual issues in meat and milk consumed by humans further aggravate the situation. Developing innovative, eco-friendly tick management techniques, such as natural products and commodities, is vital. Similarly, searching for effective and feasible treatments for tick-borne diseases is essential. Flavonoids are a class of natural chemicals with multiple bioactivities, including the inhibition of enzymes. We selected eighty flavonoids having enzyme inhibitory, insecticide, and pesticide properties. Flavonoids’ inhibitory effects on the acetylcholinesterase (AChE1) and triose-phosphate isomerase (TIM) proteins of Rhipicephalus microplus were examined utilizing a molecular docking approach. Our research demonstrated that flavonoids interact with the active areas of proteins. Seven flavonoids (methylenebisphloridzin, thearubigin, fortunellin, quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside), quercetagetin-7-O-(6-O-p-coumaroyl-β-glucopyranoside), rutin, and kaempferol 3-neohesperidoside) were the most potent AChE1 inhibitors, while the other three flavonoids (quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside), isorhamnetin, and liquiritin) were the potent inhibitors of TIM. These computationally-driven discoveries are beneficial and can be utilized in assessing drug bioavailability in both in vitro and in vivo settings. This knowledge can create new strategies for managing ticks and tick-borne diseases. |
format | Online Article Text |
id | pubmed-10145301 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101453012023-04-29 Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus Malak, Nosheen Alotaibi, Bader S. Khan, Afshan Khan, Adil Ullah, Shakir Nasreen, Nasreen Niaz, Sadaf Chen, Chien-Chin Molecules Article Ticks and tick-borne diseases constitute a substantial hazard to the livestock industry. The rising costs and lack of availability of synthetic chemical acaricides for farmers with limited resources, tick resistance to current acaricides, and residual issues in meat and milk consumed by humans further aggravate the situation. Developing innovative, eco-friendly tick management techniques, such as natural products and commodities, is vital. Similarly, searching for effective and feasible treatments for tick-borne diseases is essential. Flavonoids are a class of natural chemicals with multiple bioactivities, including the inhibition of enzymes. We selected eighty flavonoids having enzyme inhibitory, insecticide, and pesticide properties. Flavonoids’ inhibitory effects on the acetylcholinesterase (AChE1) and triose-phosphate isomerase (TIM) proteins of Rhipicephalus microplus were examined utilizing a molecular docking approach. Our research demonstrated that flavonoids interact with the active areas of proteins. Seven flavonoids (methylenebisphloridzin, thearubigin, fortunellin, quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside), quercetagetin-7-O-(6-O-p-coumaroyl-β-glucopyranoside), rutin, and kaempferol 3-neohesperidoside) were the most potent AChE1 inhibitors, while the other three flavonoids (quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside), isorhamnetin, and liquiritin) were the potent inhibitors of TIM. These computationally-driven discoveries are beneficial and can be utilized in assessing drug bioavailability in both in vitro and in vivo settings. This knowledge can create new strategies for managing ticks and tick-borne diseases. MDPI 2023-04-20 /pmc/articles/PMC10145301/ /pubmed/37110838 http://dx.doi.org/10.3390/molecules28083606 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Malak, Nosheen Alotaibi, Bader S. Khan, Afshan Khan, Adil Ullah, Shakir Nasreen, Nasreen Niaz, Sadaf Chen, Chien-Chin Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus |
title | Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus |
title_full | Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus |
title_fullStr | Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus |
title_full_unstemmed | Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus |
title_short | Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus |
title_sort | density functional theory calculations and molecular docking analyses of flavonoids for their possible application against the acetylcholinesterase and triose-phosphate isomerase proteins of rhipicephalus microplus |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145301/ https://www.ncbi.nlm.nih.gov/pubmed/37110838 http://dx.doi.org/10.3390/molecules28083606 |
work_keys_str_mv | AT malaknosheen densityfunctionaltheorycalculationsandmoleculardockinganalysesofflavonoidsfortheirpossibleapplicationagainsttheacetylcholinesteraseandtriosephosphateisomeraseproteinsofrhipicephalusmicroplus AT alotaibibaders densityfunctionaltheorycalculationsandmoleculardockinganalysesofflavonoidsfortheirpossibleapplicationagainsttheacetylcholinesteraseandtriosephosphateisomeraseproteinsofrhipicephalusmicroplus AT khanafshan densityfunctionaltheorycalculationsandmoleculardockinganalysesofflavonoidsfortheirpossibleapplicationagainsttheacetylcholinesteraseandtriosephosphateisomeraseproteinsofrhipicephalusmicroplus AT khanadil densityfunctionaltheorycalculationsandmoleculardockinganalysesofflavonoidsfortheirpossibleapplicationagainsttheacetylcholinesteraseandtriosephosphateisomeraseproteinsofrhipicephalusmicroplus AT ullahshakir densityfunctionaltheorycalculationsandmoleculardockinganalysesofflavonoidsfortheirpossibleapplicationagainsttheacetylcholinesteraseandtriosephosphateisomeraseproteinsofrhipicephalusmicroplus AT nasreennasreen densityfunctionaltheorycalculationsandmoleculardockinganalysesofflavonoidsfortheirpossibleapplicationagainsttheacetylcholinesteraseandtriosephosphateisomeraseproteinsofrhipicephalusmicroplus AT niazsadaf densityfunctionaltheorycalculationsandmoleculardockinganalysesofflavonoidsfortheirpossibleapplicationagainsttheacetylcholinesteraseandtriosephosphateisomeraseproteinsofrhipicephalusmicroplus AT chenchienchin densityfunctionaltheorycalculationsandmoleculardockinganalysesofflavonoidsfortheirpossibleapplicationagainsttheacetylcholinesteraseandtriosephosphateisomeraseproteinsofrhipicephalusmicroplus |