Cargando…
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
Semi-supervised learning is a learning pattern that can utilize labeled data and unlabeled data to train deep neural networks. In semi-supervised learning methods, self-training-based methods do not depend on a data augmentation strategy and have better generalization ability. However, their perform...
Autores principales: | Wang, Yifan, Huang, Yan, Wang, Qicong, Zhao, Chong, Zhang, Zhenchang, Chen, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145307/ https://www.ncbi.nlm.nih.gov/pubmed/37112285 http://dx.doi.org/10.3390/s23083944 |
Ejemplares similares
-
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
SeBioGraph: Semi-supervised Deep Learning for the Graph via Sustainable Knowledge Transfer
por: Ma, Yugang, et al.
Publicado: (2021) -
Multi-Scale Aggregation Graph Neural Networks Based on Feature Similarity for Semi-Supervised Learning
por: Zhang, Xun, et al.
Publicado: (2021) -
A Semi-supervised Deep Learning Method for Cervical Cell Classification
por: Zhao, Siqi, et al.
Publicado: (2022) -
IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning
por: Yan, Cheng, et al.
Publicado: (2019)