Cargando…
Terahertz Biaxial Strain Sensor Based on Double-Upright Cross Metamaterial
In this article, a terahertz metamaterial biaxial strain pressure sensor structure is proposed, which can address the problems of the low sensitivity, the narrow pressure measurement range, and the uniaxial-only detection of existing terahertz pressure sensors. The performance of the pressure sensor...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145463/ https://www.ncbi.nlm.nih.gov/pubmed/37421049 http://dx.doi.org/10.3390/mi14040816 |
Sumario: | In this article, a terahertz metamaterial biaxial strain pressure sensor structure is proposed, which can address the problems of the low sensitivity, the narrow pressure measurement range, and the uniaxial-only detection of existing terahertz pressure sensors. The performance of the pressure sensor was studied and analyzed using the time-domain finite-element-difference method. By changing the substrate material and optimizing the structure of the top cell, the size of the structure that can simultaneously improve the range and sensitivity of the pressure measurements was determined. The simulation results show that the sensor has a pressure-sensing effect in the frequency range of 1.0–2.2 THz under the conditions of transverse electric (TE) and transverse magnetic (TM) polarization, and the sensitivity can reach up to 346 GHz/μm. The proposed metamaterial pressure sensor has significant applications in the remote monitoring of target structure deformation. |
---|