Cargando…
An Active Multi-Object Ultrafast Tracking System with CNN-Based Hybrid Object Detection
This study proposes a visual tracking system that can detect and track multiple fast-moving appearance-varying targets simultaneously with 500 fps image processing. The system comprises a high-speed camera and a pan-tilt galvanometer system, which can rapidly generate large-scale high-definition ima...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145589/ https://www.ncbi.nlm.nih.gov/pubmed/37112491 http://dx.doi.org/10.3390/s23084150 |
Sumario: | This study proposes a visual tracking system that can detect and track multiple fast-moving appearance-varying targets simultaneously with 500 fps image processing. The system comprises a high-speed camera and a pan-tilt galvanometer system, which can rapidly generate large-scale high-definition images of the wide monitored area. We developed a CNN-based hybrid tracking algorithm that can robustly track multiple high-speed moving objects simultaneously. Experimental results demonstrate that our system can track up to three moving objects with velocities lower than 30 m per second simultaneously within an 8-m range. The effectiveness of our system was demonstrated through several experiments conducted on simultaneous zoom shooting of multiple moving objects (persons and bottles) in a natural outdoor scene. Moreover, our system demonstrates high robustness to target loss and crossing situations. |
---|