Cargando…

Impact of Senolytic Treatment on Gene Expression in Aged Lung

Cellular senescence plays a key role in mediating tissue remodeling and modulation of host responses to pathogenic stimuli. Our current study was designed to gain a better understanding of the impact of short-term senolytic treatment or inflammatory stimulation on lung senescence. The results of our...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Soo Jung, Pronko, Alexander, Yang, Jianjun, Stout-Delgado, Heather
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145650/
https://www.ncbi.nlm.nih.gov/pubmed/37108795
http://dx.doi.org/10.3390/ijms24087628
Descripción
Sumario:Cellular senescence plays a key role in mediating tissue remodeling and modulation of host responses to pathogenic stimuli. Our current study was designed to gain a better understanding of the impact of short-term senolytic treatment or inflammatory stimulation on lung senescence. The results of our study demonstrate that short term treatment of aged adult mice (20 months of age) with senolytics, quercetin, and dasatinib decreases p16 and p21 expression in lung tissue. Short-term treatment with senolytics also significantly improved the expression of genes associated with genomic instability, telomere attrition, mitochondrial dysfunction, DNA binding, and the inflammatory response. In contrast, in response to low-dose LPS administration, there was increased expression of genes associated with genomic instability, mitochondrial dysfunction, and heightened inflammatory responses in young adult murine lung (3 months of age). Taken together, the results of our current study illustrate the efficacy of senolytic treatment on modulating responses in aged lung and the potential role of chronic low dose inflammation on senescence induction in the lung.