Cargando…

Towards Automated and High-Throughput Quantitative Sizing and Isotopic Analysis of Nanoparticles via Single Particle-ICP-TOF-MS

The work described herein assesses the ability to characterize gold nanoparticles (Au NPs) of 50 and 100 nm, as well as 60 nm silver shelled gold core nanospheres (Au/Ag NPs), for their mass, respective size, and isotopic composition in an automated and unattended fashion. Here, an innovative autosa...

Descripción completa

Detalles Bibliográficos
Autores principales: Manard, Benjamin T., Bradley, Veronica C., Quarles, C. Derrick, Hendriks, Lyndsey, Dunlap, Daniel R., Hexel, Cole R., Sullivan, Patrick, Andrews, Hunter B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145672/
https://www.ncbi.nlm.nih.gov/pubmed/37110906
http://dx.doi.org/10.3390/nano13081322
Descripción
Sumario:The work described herein assesses the ability to characterize gold nanoparticles (Au NPs) of 50 and 100 nm, as well as 60 nm silver shelled gold core nanospheres (Au/Ag NPs), for their mass, respective size, and isotopic composition in an automated and unattended fashion. Here, an innovative autosampler was employed to mix and transport the blanks, standards, and samples into a high-efficiency single particle (SP) introduction system for subsequent analysis by inductively coupled plasma–time of flight–mass spectrometry (ICP-TOF-MS). Optimized NP transport efficiency into the ICP-TOF-MS was determined to be >80%. This combination, SP-ICP-TOF-MS, allowed for high-throughput sample analysis. Specifically, 50 total samples (including blanks/standards) were analyzed over 8 h, to provide an accurate characterization of the NPs. This methodology was implemented over the course of 5 days to assess its long-term reproducibility. Impressively, the in-run and day-to-day variation of sample transport is assessed to be 3.54 and 9.52% relative standard deviation (%RSD), respectively. The determination of Au NP size and concentration was of <5% relative difference from the certified values over these time periods. Isotopic characterization of the (107)Ag/(109)Ag particles (n = 132,630) over the course of the measurements was determined to be 1.0788 ± 0.0030 with high accuracy (0.23% relative difference) when compared to the multi-collector–ICP-MS determination.