Cargando…
Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates
A new mechanically stimulated solid-state reaction of PtCl(4) with sodium β-diketonates has been discovered. Platinum (II) β-diketonates were obtained by grinding excess sodium trifluoroacetylacetonate Na(tfac) or hexafluoroacetylacetonate Na(hfac) in a vibration ball mill, followed by subsequent he...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145686/ https://www.ncbi.nlm.nih.gov/pubmed/37110730 http://dx.doi.org/10.3390/molecules28083496 |
_version_ | 1785034396608233472 |
---|---|
author | Makhaev, Victor D. Petrova, Larisa A. |
author_facet | Makhaev, Victor D. Petrova, Larisa A. |
author_sort | Makhaev, Victor D. |
collection | PubMed |
description | A new mechanically stimulated solid-state reaction of PtCl(4) with sodium β-diketonates has been discovered. Platinum (II) β-diketonates were obtained by grinding excess sodium trifluoroacetylacetonate Na(tfac) or hexafluoroacetylacetonate Na(hfac) in a vibration ball mill, followed by subsequent heating of the resulting mixture. The reactions occur under much milder conditions (at about 170 °C) compared to similar reactions of PtCl(2) or K(2)PtCl(6) (at about 240 °C). Excess diketonate salt plays the role of a reducing agent in the conversion of Pt (IV) salt to Pt (II) compounds. The effect of grinding on properties of the ground mixtures was studied by XRD, IR, and thermal analysis methods. The difference in the course of the interaction of PtCl(4) with Na(hfac) or Na(tfac) indicates the dependence of the reaction on the ligand properties. The probable reaction mechanisms were discussed. This method of synthesis of platinum (II) β-diketonates makes it possible to substantially reduce the variety of reagents used, the number of reaction steps, the reaction time, the use of solvents, and waste generation compared to conventional solution-based methods. |
format | Online Article Text |
id | pubmed-10145686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101456862023-04-29 Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates Makhaev, Victor D. Petrova, Larisa A. Molecules Article A new mechanically stimulated solid-state reaction of PtCl(4) with sodium β-diketonates has been discovered. Platinum (II) β-diketonates were obtained by grinding excess sodium trifluoroacetylacetonate Na(tfac) or hexafluoroacetylacetonate Na(hfac) in a vibration ball mill, followed by subsequent heating of the resulting mixture. The reactions occur under much milder conditions (at about 170 °C) compared to similar reactions of PtCl(2) or K(2)PtCl(6) (at about 240 °C). Excess diketonate salt plays the role of a reducing agent in the conversion of Pt (IV) salt to Pt (II) compounds. The effect of grinding on properties of the ground mixtures was studied by XRD, IR, and thermal analysis methods. The difference in the course of the interaction of PtCl(4) with Na(hfac) or Na(tfac) indicates the dependence of the reaction on the ligand properties. The probable reaction mechanisms were discussed. This method of synthesis of platinum (II) β-diketonates makes it possible to substantially reduce the variety of reagents used, the number of reaction steps, the reaction time, the use of solvents, and waste generation compared to conventional solution-based methods. MDPI 2023-04-15 /pmc/articles/PMC10145686/ /pubmed/37110730 http://dx.doi.org/10.3390/molecules28083496 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Makhaev, Victor D. Petrova, Larisa A. Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates |
title | Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates |
title_full | Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates |
title_fullStr | Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates |
title_full_unstemmed | Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates |
title_short | Mechanically Stimulated Solid-State Interaction of Platinum Tetrachloride with Sodium β-Diketonates |
title_sort | mechanically stimulated solid-state interaction of platinum tetrachloride with sodium β-diketonates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145686/ https://www.ncbi.nlm.nih.gov/pubmed/37110730 http://dx.doi.org/10.3390/molecules28083496 |
work_keys_str_mv | AT makhaevvictord mechanicallystimulatedsolidstateinteractionofplatinumtetrachloridewithsodiumbdiketonates AT petrovalarisaa mechanicallystimulatedsolidstateinteractionofplatinumtetrachloridewithsodiumbdiketonates |