Cargando…
EFFNet-CA: An Efficient Driver Distraction Detection Based on Multiscale Features Extractions and Channel Attention Mechanism
Driver distraction is considered a main cause of road accidents, every year, thousands of people obtain serious injuries, and most of them lose their lives. In addition, a continuous increase can be found in road accidents due to driver’s distractions, such as talking, drinking, and using electronic...
Autores principales: | Khan, Taimoor, Choi, Gyuho, Lee, Sokjoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145749/ https://www.ncbi.nlm.nih.gov/pubmed/37112176 http://dx.doi.org/10.3390/s23083835 |
Ejemplares similares
-
EFFNet: A skin cancer classification model based on feature fusion and random forests
por: Ma, Xiaopu, et al.
Publicado: (2023) -
Role of the dorsal attention network in distracter suppression based on features
por: Lanssens, Armien, et al.
Publicado: (2019) -
Multiscale Hybrid Convolutional Deep Neural Networks with Channel Attention
por: Yang, Hua, et al.
Publicado: (2022) -
Attention and distraction in the predictive brain
por: Slagter, Heleen A., et al.
Publicado: (2021) -
The influence of distracter and target features on distracter induced
blindness
por: Michael, Lars, et al.
Publicado: (2012)