Cargando…

Deep Learning for Echocardiography: Introduction for Clinicians and Future Vision: State-of-the-Art Review

Exponential growth in data storage and computational power is rapidly narrowing the gap between translating findings from advanced clinical informatics into cardiovascular clinical practice. Specifically, cardiovascular imaging has the distinct advantage in providing a great quantity of data for pot...

Descripción completa

Detalles Bibliográficos
Autores principales: Krittanawong, Chayakrit, Omar, Alaa Mabrouk Salem, Narula, Sukrit, Sengupta, Partho P., Glicksberg, Benjamin S., Narula, Jagat, Argulian, Edgar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145844/
https://www.ncbi.nlm.nih.gov/pubmed/37109558
http://dx.doi.org/10.3390/life13041029
Descripción
Sumario:Exponential growth in data storage and computational power is rapidly narrowing the gap between translating findings from advanced clinical informatics into cardiovascular clinical practice. Specifically, cardiovascular imaging has the distinct advantage in providing a great quantity of data for potentially rich insights, but nuanced interpretation requires a high-level skillset that few individuals possess. A subset of machine learning, deep learning (DL), is a modality that has shown promise, particularly in the areas of image recognition, computer vision, and video classification. Due to a low signal-to-noise ratio, echocardiographic data tend to be challenging to classify; however, utilization of robust DL architectures may help clinicians and researchers automate conventional human tasks and catalyze the extraction of clinically useful data from the petabytes of collected imaging data. The promise is extending far and beyond towards a contactless echocardiographic exam—a dream that is much needed in this time of uncertainty and social distancing brought on by a stunning pandemic culture. In the current review, we discuss state-of-the-art DL techniques and architectures that can be used for image and video classification, and future directions in echocardiographic research in the current era.