Cargando…
Information Scale Correction for Varying Length Amplicons Improves Eukaryotic Microbiome Data Integration
The integration and reanalysis of big data provide valuable insights into microbiome studies. However, the significant difference in information scale between amplicon data poses a key challenge in data analysis. Therefore, reducing batch effects is crucial to enhance data integration for large-scal...
Autores principales: | Zhou, Tong, Zhao, Feng, Xu, Kuidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146031/ https://www.ncbi.nlm.nih.gov/pubmed/37110372 http://dx.doi.org/10.3390/microorganisms11040949 |
Ejemplares similares
-
Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas Selective Amplicon Sequencing (CCSAS)
por: Zhong, Kevin Xu, et al.
Publicado: (2021) -
A practical guide to amplicon and metagenomic analysis of microbiome data
por: Liu, Yong-Xin, et al.
Publicado: (2020) -
Correction to: MetaSquare: an integrated metadatabase of 16S rRNA gene amplicon for microbiome taxonomic classification
Publicado: (2022) -
Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing
por: Shin, Jongoh, et al.
Publicado: (2016) -
Correction to: High-resolution ISR amplicon sequencing reveals personalized oral microbiome
por: Mukherjee, Chiranjit, et al.
Publicado: (2018)