Cargando…
A Fast and Low-Power Detection System for the Missing Pin Chip Based on YOLOv4-Tiny Algorithm
In the current chip quality detection industry, detecting missing pins in chips is a critical task, but current methods often rely on inefficient manual screening or machine vision algorithms deployed in power-hungry computers that can only identify one chip at a time. To address this issue, we prop...
Autores principales: | Chen, Shiyi, Lai, Wugang, Ye, Junjie, Ma, Yingjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146155/ https://www.ncbi.nlm.nih.gov/pubmed/37112258 http://dx.doi.org/10.3390/s23083918 |
Ejemplares similares
-
Accuracy vs. Energy: An Assessment of Bee Object Inference in Videos from On-Hive Video Loggers with YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny
por: Kulyukin, Vladimir A., et al.
Publicado: (2023) -
E-YOLOv4-tiny: a traffic sign detection algorithm for urban road scenarios
por: Xiao, Yanqiu, et al.
Publicado: (2023) -
A novel optimized tiny YOLOv3 algorithm for the identification of objects in the lawn environment
por: Wang, Xinyan, et al.
Publicado: (2022) -
Improved YOLOv4-tiny based on attention mechanism for skin detection
por: Li, Ping, et al.
Publicado: (2023) -
Real-time jellyfish classification and detection algorithm based on improved YOLOv4-tiny and improved underwater image enhancement algorithm
por: Gao, Meijing, et al.
Publicado: (2023)