Cargando…
Training a Two-Layer ReLU Network Analytically
Neural networks are usually trained with different variants of gradient descent-based optimization algorithms such as the stochastic gradient descent or the Adam optimizer. Recent theoretical work states that the critical points (where the gradient of the loss is zero) of two-layer ReLU networks wit...
Autor principal: | Barbu, Adrian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146164/ https://www.ncbi.nlm.nih.gov/pubmed/37112413 http://dx.doi.org/10.3390/s23084072 |
Ejemplares similares
-
Integrating geometries of ReLU feedforward neural networks
por: Liu, Yajing, et al.
Publicado: (2023) -
Improved Geometric Path Enumeration for Verifying ReLU Neural Networks
por: Bak, Stanley, et al.
Publicado: (2020) -
Studying the Evolution of Neural Activation Patterns During Training of Feed-Forward ReLU Networks
por: Hartmann, David, et al.
Publicado: (2021) -
Multimodal transistors as ReLU activation functions in physical neural network classifiers
por: Surekcigil Pesch, Isin, et al.
Publicado: (2022) -
A Cooperative Lightweight Translation Algorithm Combined with Sparse-ReLU
por: Xu, Xintao, et al.
Publicado: (2022)