Cargando…
Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration
Processibility and biodegradability of conductive polymers are major concerns when they are applied to tissue regeneration. This study synthesizes dissolvable and conductive aniline trimer-based polyurethane copolymers (DCPU) and processes them into scaffolds by using electrospinning with different...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146274/ https://www.ncbi.nlm.nih.gov/pubmed/37103277 http://dx.doi.org/10.3390/jfb14040185 |
_version_ | 1785034541742686208 |
---|---|
author | Zhang, Yinglong Tang, Jiajing Fang, Wei Zhao, Qing Lei, Xiaoyu Zhang, Jinzheng Chen, Jieqiong Li, Yubao Zuo, Yi |
author_facet | Zhang, Yinglong Tang, Jiajing Fang, Wei Zhao, Qing Lei, Xiaoyu Zhang, Jinzheng Chen, Jieqiong Li, Yubao Zuo, Yi |
author_sort | Zhang, Yinglong |
collection | PubMed |
description | Processibility and biodegradability of conductive polymers are major concerns when they are applied to tissue regeneration. This study synthesizes dissolvable and conductive aniline trimer-based polyurethane copolymers (DCPU) and processes them into scaffolds by using electrospinning with different patterns (random, oriented, and latticed). The effects of topographic cue changes on electrical signal transmission and further regulation of cell behaviors concerning bone tissue are researched. Results show that DCPU fibrous scaffolds possessed good hydrophilicity, swelling capacity, elasticity, and fast biodegradability in enzymatic liquid. In addition, the conductivity and efficiency of electrical signal transmission can be tuned by changing the surface’s topological structure. Among them, oriented DCPU scaffolds (DCPU-O) showed the best conductivity with the lowest ionic resistance value. Furthermore, the viability and proliferation results of bone mesenchymal stem cells (BMSCs) demonstrate a significant increase on three DCPU scaffolds compared to AT-free scaffolds (DPU-R). Especially, DCPU-O scaffolds exhibit superior abilities to promote cell proliferation because of their unique surface topography and excellent electroactivity. Concurrently, the DCPU-O scaffolds can synergistically promote osteogenic differentiation in terms of osteogenic differentiation and gene expression levels when combined with electrical stimulation. Together, these results suggest a promising use of DCPU-O fibrous scaffolds in the application of tissue regeneration. |
format | Online Article Text |
id | pubmed-10146274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101462742023-04-29 Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration Zhang, Yinglong Tang, Jiajing Fang, Wei Zhao, Qing Lei, Xiaoyu Zhang, Jinzheng Chen, Jieqiong Li, Yubao Zuo, Yi J Funct Biomater Article Processibility and biodegradability of conductive polymers are major concerns when they are applied to tissue regeneration. This study synthesizes dissolvable and conductive aniline trimer-based polyurethane copolymers (DCPU) and processes them into scaffolds by using electrospinning with different patterns (random, oriented, and latticed). The effects of topographic cue changes on electrical signal transmission and further regulation of cell behaviors concerning bone tissue are researched. Results show that DCPU fibrous scaffolds possessed good hydrophilicity, swelling capacity, elasticity, and fast biodegradability in enzymatic liquid. In addition, the conductivity and efficiency of electrical signal transmission can be tuned by changing the surface’s topological structure. Among them, oriented DCPU scaffolds (DCPU-O) showed the best conductivity with the lowest ionic resistance value. Furthermore, the viability and proliferation results of bone mesenchymal stem cells (BMSCs) demonstrate a significant increase on three DCPU scaffolds compared to AT-free scaffolds (DPU-R). Especially, DCPU-O scaffolds exhibit superior abilities to promote cell proliferation because of their unique surface topography and excellent electroactivity. Concurrently, the DCPU-O scaffolds can synergistically promote osteogenic differentiation in terms of osteogenic differentiation and gene expression levels when combined with electrical stimulation. Together, these results suggest a promising use of DCPU-O fibrous scaffolds in the application of tissue regeneration. MDPI 2023-03-28 /pmc/articles/PMC10146274/ /pubmed/37103277 http://dx.doi.org/10.3390/jfb14040185 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yinglong Tang, Jiajing Fang, Wei Zhao, Qing Lei, Xiaoyu Zhang, Jinzheng Chen, Jieqiong Li, Yubao Zuo, Yi Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration |
title | Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration |
title_full | Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration |
title_fullStr | Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration |
title_full_unstemmed | Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration |
title_short | Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration |
title_sort | synergetic effect of electrical and topographical cues in aniline trimer-based polyurethane fibrous scaffolds on tissue regeneration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146274/ https://www.ncbi.nlm.nih.gov/pubmed/37103277 http://dx.doi.org/10.3390/jfb14040185 |
work_keys_str_mv | AT zhangyinglong synergeticeffectofelectricalandtopographicalcuesinanilinetrimerbasedpolyurethanefibrousscaffoldsontissueregeneration AT tangjiajing synergeticeffectofelectricalandtopographicalcuesinanilinetrimerbasedpolyurethanefibrousscaffoldsontissueregeneration AT fangwei synergeticeffectofelectricalandtopographicalcuesinanilinetrimerbasedpolyurethanefibrousscaffoldsontissueregeneration AT zhaoqing synergeticeffectofelectricalandtopographicalcuesinanilinetrimerbasedpolyurethanefibrousscaffoldsontissueregeneration AT leixiaoyu synergeticeffectofelectricalandtopographicalcuesinanilinetrimerbasedpolyurethanefibrousscaffoldsontissueregeneration AT zhangjinzheng synergeticeffectofelectricalandtopographicalcuesinanilinetrimerbasedpolyurethanefibrousscaffoldsontissueregeneration AT chenjieqiong synergeticeffectofelectricalandtopographicalcuesinanilinetrimerbasedpolyurethanefibrousscaffoldsontissueregeneration AT liyubao synergeticeffectofelectricalandtopographicalcuesinanilinetrimerbasedpolyurethanefibrousscaffoldsontissueregeneration AT zuoyi synergeticeffectofelectricalandtopographicalcuesinanilinetrimerbasedpolyurethanefibrousscaffoldsontissueregeneration |