Cargando…
Wrist-Based Electrodermal Activity Monitoring for Stress Detection Using Federated Learning
With the most recent developments in wearable technology, the possibility of continually monitoring stress using various physiological factors has attracted much attention. By reducing the detrimental effects of chronic stress, early diagnosis of stress can enhance healthcare. Machine Learning (ML)...
Autores principales: | Almadhor, Ahmad, Sampedro, Gabriel Avelino, Abisado, Mideth, Abbas, Sidra, Kim, Ye-Jin, Khan, Muhammad Attique, Baili, Jamel, Cha, Jae-Hyuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146352/ https://www.ncbi.nlm.nih.gov/pubmed/37112323 http://dx.doi.org/10.3390/s23083984 |
Ejemplares similares
-
Efficient Feature-Selection-Based Stacking Model for Stress Detection Based on Chest Electrodermal Activity
por: Almadhor, Ahmad, et al.
Publicado: (2023) -
Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities
por: Bofill, Jherson, et al.
Publicado: (2023) -
A Survey of Image-Based Fault Monitoring in Additive Manufacturing: Recent Developments and Future Directions
por: Kim, Ryanne Gail, et al.
Publicado: (2023) -
CXray-EffDet: Chest Disease Detection and Classification from X-ray Images Using the EfficientDet Model
por: Nawaz, Marriam, et al.
Publicado: (2023) -
A novel framework of multiclass skin lesion recognition from dermoscopic images using deep learning and explainable AI
por: Ahmad, Naveed, et al.
Publicado: (2023)